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This paper describes an improved version of the Phantom
edge finder, called Spectre. Spectre is simpler to implement,
faster, and does more extensive image processing. The crucial
topological sum operation is improved in two ways: a new
tesselation for representing images simplifies sums along 1D
paths and a simpler, directional method is used to extend 1D
sums to 2D.

Both edge finders use the topological sum to remove noise
from second difference responses, so that zero-crossings in
these responses represent reliable boundaries. Spectre applies
the same techniques to a combination of first and third dif-
ferences, producing a new map that reliably distinguishes real
boundaries from spurious boundaries appearing in staircase
intensity patterns. Similar processing is used lo mark re-
sponse regions not associated with zero-crossings (including
roof edges) and to compute boundary strengths.

The dominant problem in designing edge finders is how to
suppress the effects of camera noise while retaining as much
image detail as possible. For example, the Phantom edge
finder [1,2] reports boundaries where second directional dif-
ferences change sign. However, when these differences are
near zero, their signs can be altered by camera noise, caus-
ing the edge finder to report spurious boundaries. The edge
finder identifies regions in which the sign has been corrupted
by noise and re-classifies them as having near-zero response,
so that they will generate no boundaries.

The Phantom edge finder identifies noisy responses using
a topological sum. This operation integrates response ampli-
tude over connected regions in which the response does not
change sign. So, in Figure 1, the sum at location = will be
the area of the shaded region. Cells whose topological sum
is below a threshold are re-classified as near-zero. This tech-
nique suppresses the effects of noise with less smoothing than
previous algorithms (e.g. Canny’s [3]) and thus retains more
image detail [2].

Previous uses of topological sums [4,5,6] have typically con-
sidered only the 1D case. The 2D extension in [7,8] is unclear
and untested. The Phantom edge finder sums responses over
star-conver 2D regions, i.e. regions in which each cell is con-
nected to the starting cell by a straight path. This 2D exten-
sion produced good results, but proved difficult and inefficient
to implement. In this paper, I present a simpler and faster
2D extension, together with a streamlined overall algorithm
called Spectre.

A second difficulty with second difference edge finders, in-
cluding the Phantom edge finder, is that they report spu-
rious boundaries in regions of uniform intensity when two
boundaries of the same polarity occur next to one another,
as in the top of the righthand console in Figures 2-4. These
boundaries should not cause serious problems for low-level
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Figure 1: The topological sum at location = is the
area of the shaded region.

Figure 2: A 300 by 800 image of a console and
display.

algorithms such as stereo matchers,! but they will confuse
higher-level processing. These boundaries differ from real
boundaries in their behavior across scales [9,10]. However, no
robust method of using this observation has been proposed
and it cannot, even in principle, classify features visible only
at the finest scale.

It is well-known theoretically that the first and third dif-
ferences at these spurious boundaries have the same sign,
whereas they have opposite signs at real boundaries. How-
ever, previous implementations of this sign test seem to work
only on extremely low-resclution images [11,12] or for con-
strained boundary shapes [13,14]. T will show that the same
methods used to remove noise from second differences can
also be used to produce a reliable sign test map, even in
dense texture.

1The spurious boundaries are unstable only under those
changes in viewpoint that also change the apparent size of regions.
Some researchers [9] view the scale instability as fatal to low-level
matching. However, real boundaries are also unstable under scale
changes, except in special cases such as ideal step edges.
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Figure 3: Second difference labels for the image
in Figure 2. Cells labelled DARK and LIGHT are
shown in black and white, cells with both labels
or neither are shown in grey.

Figure 4:
ences in

Zero-crossings from the second differ-
Figure 3.

Figure 5: In the pseudo-hezagonal tesselation,
cells have almost the same size and locations as
in a rectangular array. However, each cell (e.g.
X ) touches only siz other cells (A, B, C, D, E,
and F) all along extended edges.

Figure 6: Left: a star-convez connected neighbor-
hood. Right: a directional connected neighbor-
hood.
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Angle Steps | Cells in even  Cells in odd
rows (even y) rows (odd y)
0 all | (1,0) 1,0)
34 odd (1,0) (1,0)
even | (0,1) (1,1)
64 all (0,1) (1,1)
90 all (0,1) (0,1)
116 all (-1,1) (0,1)
146 odd (-1,0) (-1,0)
even | (-1,1) (0,1)

Table 1: The (z,y) displacements used to move
between successive elements of paths.

1D TOPOLOGICAL SUMS

Topological sums in 2D are based on 1D topological sums
taken along straight paths. Most computer vision algorithms
represent images using rectangular or hexagonal tesselations.
However, in a rectangular tesselation, diagonally adjacent
cells touch at just a vertex. A same-sign region containing
such a pair of cells fails to be connected if the other cells
meeting at that vertex have contrasting signs. Thus, all four
cells must be examined in building an integration region.?
Hexagonal tesselations lack this connectivity problem but re-
quire re-sampling the image.

I use a new pseudo-hezagonal cell arrangement, shown in
Figure 5, that combines the advantages of rectangular and
hexagonal tesselations. Because cell locations and shapes are
almost rectangular, digitized intensity values from standard
camera systems can be used without re-sampling. However,
two adjacent cells always meet along an extended edge, never
at just a vertex, so building integration regions only requires
examining cells actually on the integration path.

Suppose that we have taken the second differences of image
intensities in some direction. Each cell can be labelled DARK
if its response is above zero, LIGHT if it is below zero, and
NEAR-ZERO otherwise. Processing described in later sections
may give some cells the special label IMPASSABLE. Two labels
contrast if (a) either one is IMPASSABLE or (b) one is DARK
and the other LIGHT. Integration along a path stops when
two cells in it have contrasting labels.

Integration along a path proceeds by moving response am-
plitudes and labels along the path, cell by cell, out to some
desired path length. At each step, the shifted and unshifted
labels at each cell are examined. If they do not contrast, the
shifted response amplitude is added to the output sum at
that cell. If they contrast, the shifted response amplitude is
zeroed.

To compute the full topological sum, this shift-and-add
process must be repeated twice, moving in opposite direc-
tions along the path. This technique is easily generalized to
any set of mutually-exclusive labels, plus the special labels
NEAR-ZERO and IMPASSABLE. Although the labels in this ex-
ample reflected the signs of the responses, the topological
sum computation does not depend on the existence of any
such relationship.

The current implementation uses paths in 6 directions.
However, in the tesselation of Figure 5, not all diagonal
moves are possible. Table 1 shows how the algorithm moves
from one cell to the next one on the path. For example, to

2Defining connectivity as in [1,2]. Similar facts hold for other
definitions [15].



move along a path at 34 degrees, starting from an cell in
an odd row, it moves one cell right, then one cell up, then
one cell right, then (since the current cell is now in an even
row) diagonally up and to the right. These paths were cho-
sen so that the entire image can be shifted at once in the
path direction (convenient for parallel implementations) and
so that they approximate the directions in which differences
are taken (Appendix A). To produce negative displacements
along these paths, one must not only reverse the signs of the
displacements shown in Table 1, but also exchange the roles
of even and odd rows.

SECOND DIFFERENCES

Spectre’s first task is to classify cells based on the signs of
the second differences of image intensity. Spectre uses direc-
tional differences taken in six directions about each cell (Ap-
pendix A). Based on these differences, each cell is labelled
DARK, LIGHT, NEAR-ZERO, or IMPASSABLE. This method per-
forms better at corners and junctions than isotropic operators
[1,2]. The 1D topological sum is used to remove the effects
of noise from this labelling.

Spectre classifies second differences in much the same way
as the Phantom edge finder [1,2]. However, a simpler gap
filling algorithm and judicious rearrangement of operations
allows Spectre to use fewer topological sums and to use direc-
tional, rather than isotropic sums. Specifically, Spectre first
constructs a preliminary labelling, using differences from all
directions. This labelling is used to guide removal of noise
from the responses in individual directions.

Responses in each direction are labelled as DARK, LIGHT,
or NEAR-ZERO, depending on their sign. The global label at
each cell summarizes its pattern of labels over all directions.
Many cells are labelled both LIGHT and DARK, in different di-
rections. However, the cell is given both labels in the global
map only if the amplitudes of the largest positive and small-
est negative differences are comparable. In the current im-
plementation, the smaller must be at least 40 percent of the
larger. Otherwise, the cell is given the label of the strongest
directional response, or NEAR-ZERO if all responses are zero.

Global labels due to image noise are identified by con-
sidering each set of directional responses separately. First,
the directional labels are reconciled with the global labels.
Specifically, if the directional label is DARK and the global
map contains only the label LIGHT, or vice versa, the cell is
re-labelled IMPASSABLE. Also, where the directional map is
NEAR-ZERO, it inherits any labels present in the global map.

Using these modified directional labels, Spectre takes two
cascaded 1D topological sums. The first sum integrates the
responses in the same direction in which differences were
taken, proceeding out 3 cells each direction (i.e. a maximum
of 7 cells contribute to the sum at each cell). These summed
responses are then integrated along paths perpendicular to
the difference direction, out to a radius of 5 cells (i.e. 11
cells total). Cells whose response sum is below a threshold
(currently 600) * are re-labelled as NEAR-ZERO.

Figure 6 compares this directional integration to the star-
convex integration used in the Phantom edge finder. Direc-
tional integration is easier to implement and requires fewer
operations. However, since it is not isotropic, it must be ap-
plied to data that specifies a natural direction of application,
such as the second differences used in Spectre. For other
tasks, an isotropic operator can be reconstructed by apply-

?Including all IMPASSABLE cells
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Figure 7: Sign test results for the image in Fig-
ure 2. Cells passing the sign test are shown
in white, those failing it in black, and those
NEAR-ZERO or receiving both labels in grey.

ing the directional sum in all six directions and taking the
maximum response.

After removing noisy labels in each direction, very small
response regions are pruned. The resulting clean directional
labels are OR-ed together into a new global labelling. Fi-
nally, small gaps in the global labelling are filled, yielding a
clean response map, like that in Figure 3. The pruning and
filling code is a simple adaptation of techniques from digital
morphology, described in Appendix B.

Sign changes in the second difference map now represent
potential boundaries (Figure 4). For later processing, cells
labelled both DARK and LIGHT are re-interpreted as IMPASS-
ABLE. Boundaries then consist of all cells labelled IMPASS-
ABLE, together with all cell edges separating a LIGHT cell
from a DARK cell.* As discussed in the introduction, some of
these boundaries may be spurious.

FURTHER PROCESSING

To eliminate spurious boundaries and provide more detailed
image descriptions, Spectre computes three further image
maps. The sign test map shows where the first and third
differences have opposite sign. It is used to prune spurious
boundaries. Another map marks significant areas of second
difference response not associated with zero-crossings (e.g.
“roof” edges). Finally, amplitudes are computed for cells
near zero-Crossings or in non-zero-crossing responses.

In each direction, I define the sign test function to be pos-
itive exactly when the first and third directional differences
have the same sign. Thus, a boundary is real if the sign test
is negative and spurious otherwise. I define the magnitude of
the sign test to be the minimum of the magnitudes of these
the first and third differences. Unlike the product used in
[9,11], this allows the magnitude of the sign test to reflect
the reliability of its sign.

The sign test function is processed in exactly the same way
as the second differences, but using a noise threshold of 300.
This produces clean maps, as in Figure 7. Figure 8 shows
boundaries induced by second difference labels from cells that
pass the sign test. Notice that the spurious boundaries in
the righthand console have been pruned. Figure 9 shows the
effects of pruning on complex intersections.

4See [1,2] for formal models of these boundaries.



Figure 8: Zero-crossings from second differences
(Figure 3) from cells that pass the sign test (Fig-
ure 7).

Figure9: A 100 by 100 image of intersections with
zero-crossing boundaries before (left) and after
(right) sign test pruning.

Figure 10: White: cells in Figure 2 that are as-
sociated with zero-crossings (i.e. cells labelled
NEAR-ZC). Black: significant areas of response not
associated with zero-crossings (i.e. cells labelled
NoT-zC). Cells given both labels are also shown in
black.
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Figure 11: Second difference responses (as in Fig-
ure 3), but only for cells given either the label
NEAR-ZC or the label NOT-ZC.

2R

Figure 12: A 240 by 170 outdoor scene.

The combination of the second difference map and the sign
test map introduces a variety of new features that could sup-
plement boundary locations in vision algorithms. For exam-
ple, the width of the sign test regions might be useful in
estimating boundary blur [16]. Locations where second dif-
ferences fall to NEAR-ZERO could be used in stereo matching
and might explain the data in [17,18). Finally, regions of fail-
ing sign test often separate the second difference responses of
closely-packed features, making it easier to classify responses.

It has long been recognized that images contain second
difference responses not associated with zero-crossings, e.g.
“roof” edges, shadowed object edges, and bright patches on
smoothly-shaded objects. Figure 10 shows some examples.
However, many of these responses are connected to zero-
crossings in the second difference map, making them impos-
sible for previous proposed methods [6,19] to detect.

To identify these regions, Spectre uses a modified set of sec-
ond difference labels, in which cells with no second difference
or with a failing sign test are re-labelled as NO-RESPONSE.
Cells next to zero-crossings are identified as NEAR-ZC, as are

Figure 13: Boundaries for the image in Figure 12
before sign test pruning.
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Figure 14: Boundaries for the image in Figure 12
after sign test pruning.

Figure 15: Boundary sirengths for the image in
Figure 2, shown only for cells assigned the label
NEAR-ZC o7 NON-ZC.

cells in the middle of zero-crossings (i.e. IMPASSABLE cells).
In each direction, the 1D topological sum (radius 7) is then
used to spread NEAR-ZC labels to the entire connected re-
sponse regions. Small holes are filled as described in Ap-
pendix B.

In each direction, second difference responses for cells la-
beled NEAR-ZC or NO-RESPONSE are deemed to be adequately
explained by the zero-crossings. These responses are re-set
to zero. To remove noise, a directional topological sum is
run on the remaining responses, still using the modified sec-
ond difference labels. Cells with sum above 600 are labelled
NON-ZC and small holes in this labelling filled (Appendix B).
The map shown in Figure 10 was produced by OR-ing labels
from all directions. Figure 11 shows second difference labels
for cells assigned either NEAR-ZC or NON-ZC labels.

Figure 16: Boundary sirengths for the image in
Figure 2, interpolated to give local intensity val-
ues for the whole image.
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Figure 17: Intensities for the image in Figure 2,
reconstructed from the boundary strengths shown
in Figure 15.

This processing also works well on natural, finely-textured
images, as illustrated by Figures 12-14. Some examples of
boundaries failing the sign test can be seen on the tree trunk
and at the top of the lawn. In general, this class of spuri-
ous boundaries seems not to be very common: the image in
Figure 2 contains an exceptionally large number.

The final processing step computes boundary strengths.
In each direction, the 1D topological sum of second differ-
ence responses is taken parallel to the difference direction,
using the second difference labels.”> Output strengths are the
maximum amplitude responses over all directions. Figure 15
shows these strengths for the NEAR-ZC and NON-ZC cells.

Edge finder results at coarser scales can be produced by
running Spectre on a pyramid of smoothed and sampled ver-
sions of the image. In this implementation, each dimension
of the image was reduced by a factor of 2 between successive
scales. Sampling continues until either dimension falls below
a minimum size (10 cells). This process generates a discrete
set of scales, typically 5-7 per image.

Interestingly, a full map of image intensities can be re-
constructed from the amplitudes at NEAR-ZC and NON-ZC
cells at all scales. Strengths at these cells are first interpo-
lated over the whole image (using a pyramid data structure)
as in Figure 16. Results at all scales are added together,
by smoothly expanding the coarser-scale results, producing
the reconstruction in Figure 17. This reconstruction can-
not be exact. For example, this algorithm should mimic
the Craik-O’Brian-Cornsweet illusion found in human per-
ception. However,the similarity to the original image suggests
that the boundary locations and amplitudes contain most of
the important information in the image (contrast [20]).

CONCLUSIONS

We have seen that the new edge finder, Spectre, is simple
to build and can do more extensive image processing than
the Phantom edge finder. Spectre is implemented in C and
requires 13.5 minutes on a Sun 4/260C workstation to process
a 512 by 512 image at the finest scale (18 minutes for all
scales). Of this, extracting the clean second difference map
(the processing done by the Phantom edge finder) requires
only about 4 minutes (5.4 minutes for all scales). Since all
operations are simple and local, it should run much faster on
parallel hardware.

5The original, unmodified ones, as shown in Figure 2.
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APPENDIX A: DETAILS OF
DIFFERENCES

Spectre uses first, second, and third differences in 6 direc-
tions. The image is first smoothed with the mask [1,2,1] in
both axis directions, to remove interlace differences. First
differences are taken by applying the mask [1,0,—1] to the
values at 3 cells. Depending on the desired direction, the
lefthand cell would lie at one of the following displacements
from the middle cell: (1,0), (1,0.5), (0.5,1), (0,1), (—0.5,1),
and (—1,0.5) and the righthand cell in the opposite direc-
tion. Fractional displacements are achieved by averaging val-
ues from two adjacent cells. Second and third differences
are computed similarly, using the mask [1,—2,1] for second
differences, and [1,—2,0, 2, —1] for third differences.

To retain all available precision, all steps in this computa-
tion are implemented as weighted sums, with no division by
mask norms. Thus, the first differences are effectively mul-
tiplied by 64, the second differences by 128, and the third
differences by 96.

APPENDIX B: GAP FILLING
AND PRUNING

To fill small gaps in response regions, Spectre uses a tech-
nique similar to morphological dilation followed by erosion
[21]. Specifically, the label at each cell is propagated to any
of its six neighbors that is labelled NEAR-ZERO. Some cells
may receive both LIGHT and DARK labels. Labels are then
stripped from any cell adjacent to a NEAR-ZERO cell.

Small response regions can be pruned by applying these
operations in the reverse order. However, in directional re-
sponses, cells centered on boundaries may be labelled NEAR-
ZERO. Raw pruning will unfairly remove labels near such
cells. Therefore, in building second difference and sign test
maps, directional labels are filled (propagate then strip) be-
fore pruning (strip then propagate). However, any new labels
introduced by the filling are erased before directions are com-
bined.

Similarly, in detection of non-zero-crossing response, gaps
between NEAR-ZC and NO-RESPONSE regions must be filled,
without filling small non-zero-crossing regions with NO-
RESPONSE labels. In this case, NEAR-ZC and NO-RESPONSE
labels are filled, but then any new NO-RESPONSE labels intro-
duced by filling are erased.
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