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This paper discusses the poor performance of the Canny
edge detector at junctions formed by three edges, where
connectivity is usually destroyed in an arbitrary way.
This problem is shown to be due to the non-maximal
suppression algorithm, used to identify points of
inflection in the grey-level surface. A method to
overcome the problem, based on local evidence in the
gradient vector, is reported and demonstrated.

1. INTRODUCTION
Edge detection has attracted much attention in the field
of computer vision. It is a commonly used step towards
a symbolic description of the image. A number of edge
detectors have been proposed, including that by Canny
[1,2], which has received widespread practical acceptance.

Edges are usually defined as being at the points of
inflection of the grey level surface, and the inflection
points may be identified by finding the local maxima in
the gradient of the image. In the usual implementation
of the Canny edge detector, the maxima are found by
means of an algorithm, which suppresses all points
where the magnitude of the gradient is not locally
maximal in the direction of the gradient at the point in
question. We refer to this algorithm as the conventional
Canny operator.

However, junctions of 3 or more linear edges are not
treated effectively. Such junctions are very common in
images, especially at trihedral intersections and
occlusion boundaries. The failure of the Canny operator
at junctions destroys the connectivity between edges in
the image, which may cause problems in later grouping
stages. Figure 1 shows two synthetic T-junctions
formed by the edges between three homogenous grey
level patches. The conventional Canny operator leaves a
gap on the weaker edge (Figure 2). Depending on the
relative strengths of the edges, the Canny operator
breaks a single real edge into two pieces (Figure 2(a)) or
fails to detect the junction with the occluded line
(Figure 2(b)).

T-junctions are powerful indicators of 3-d occlusion [3,
4, 5] which the Canny operator fails to identify. Similar
problems occur at trihedral (Y or ^ ) junctions. These
failures may not seem significant to intelligent human
eyes, but they create problems for higher level
algorithms concerned with the connection and grouping
of edges. We show below that the problem is caused by
the non-maximum suppression algorithm, which works
effectively at linear edge features but fails at junctions.

We call such failures "false suppression".

Figure 1. T-Junctions formed by 3 regions of different
grey levels

Figure 2. The false suppression of edges by the
Canny operator

The Canny operator has previously attracted much
critical evaluation, e.g. [6, 7, 8, 9, 10]. A few studies
have considered the failure of connectivity at junctions in
detail. Nobel [9] criticised this behaviour of the Canny
operator at junctions and proposed a completely
different approach, based on mathematical morphology
to overcome the problem. It is more common to assume
that such failures can be corrected at a later stage of
analysis, by use of higher level knowledge [10]. The
latter approach inevitably makes the search at the line
grouping stages of analysis more ambiguous. This
uncertainty can be avoided if the junctions are detected
properly.

This paper examines the reason for failure at junctions
and suggests a locally based algorithm to overcome the
shortcoming. Finally we discuss the limitation of the
proposed solution and put forward proposals for further
work.
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Figure 3. Four views of the magnitude of V I , The weaker ridge coincides with the positive X-axis

THE PERFORMANCE OF THE CANNY
OPERATOR AT JUNCTIONS
We consider a T-junction formed by 3 homogenous grey
level surface patches (Figure l(b)). The intensity surface
is represented by I(x,y).

Edges are identified by the Canny operator as points of
inflection in I, after smoothing by a gaussian of standard
deviation a, to form I (a = 2 in the Figures). Figure 3
illustrates the magnitude of the discretely sampled
gradient vector, VI . This consists of distinct ridges

©

along the edges in the image, which merge at the
junction.

Figure 4 represents the gradient vector in the immediate
vicinity of the junction by means of directed lines. It
can be seen that the gradient direction lies perpendicular
to the edges at points which lies further than
approximately 2-3a from the junction, but becomes
distorted by interference between the edges close to the
junction.

The Canny operator discovers 1-dimensional maxima in
the magnitude of the gradient vector, by computing the
change in the magnitude of the gradient at each pixel, in
the direction of the gradient It does this by
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Figure 4. Gradient vectors in the neighborhood of a
T-junction

interpolating values between samples, at a distances of
approximately +/-1 pixel from each point. As we
approach the junction along the weakest edge (the
horizontal edge in Figure 4), the local direction of VI
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becomes increasingly affected by the vertical edge. At
some point, depending on the relative grey levels of the
image, it becomes rotated towards the x direction. The
magnitude of VI is no longer maximal (as defined by

the Canny operator), since it increases in the x direction
towards the vertical ridge. The non-maximum
suppression algorithm therefore rejects this part of the
weaker edge, and leaves a gap on the weaker horizontal
edge, as demonstrated in Figure 2(b).

RECOVERY FROM FALSE SUPPRESSION

Identification of false suppression
According to the preceding analysis, false suppression
reliably occurs on the weakest edge of a junction, where
a false free end is created. "Real" free ends do occur in
images, where a grey edge tapers out. We can
distinguish real from false free ends by the fact that at a
false free end the magnitude of the gradient increases in
the general direction perpendicular to the gradient at the
free end, and a new peak occurs within approximately 3a.

Recovery Algorithms
A simple algorithm to correct the error is to extend the
falsely suppressed edge perpendicular to the gradient at
the free end, until it reaches a point which has already
been identified as an edge by the non-maximum
suppression algorithm. To be acceptable, the magnitude
of the gradient at the new edge must exceed that of the
free end.

In practice the direction of the gradient at the free end is
unreliable, and our algorithm searches back along the

affected edge for a distance of 2a to check that the edge
is not an isolated fragment, and that it has a consistent
orientation and strength.

As shown in Figure 5 situations may occur where simple
linear extrapolation causes an error in the recovery of
the junction position. However, the correctly detected
stronger edges of the occluding surface are necessarily of
different strengths. Therefore an inflection point should
exist in the magnitude of the gradient along the already
marked stronger edges. This may be seen clearly in
Figure 3.

v linear extrapolation
\
weakest edge

Figure 5. Failure of the linear algorithm

point on the strong edge, and connects the free end to
this point. Figure 6 shows the algorithm applied to Fig.
1. In fact the location of the point of inflection still
fails to identify the junction point exactly, since it may
be displaced by the gaussian smoothing operation, up to a

distance of a from the expected position. Information
to correct this residual error is not available in the
blurred image at this scale of processing.

A more accurate algorithm searches for the inflection

Figure 6. Recovery of edge-connectivity by the
modified operator

Application to natural images
The previous discussion is based on the behaviour at ideal
edges, as was Canny's original treatment. In natural
images edges make junctions with arbitrary orientations,
the regions are not homogeneous, and the image is
degraded by noise.

Figure 7 illustrates the performance of the algorithm
applied to a natural image. Figure 7(a) shows the image,
Figure 7(b) the result of the conventional Canny
operator and Figure 7(c) the result of modified
operator. Attention should be focussed on the
junctions. In Figure 7(c) the grey points are those
marked by the conventional Canny operator and black
points are the additional points marked by the current
method. Note the improved ability to detect occluded
edges, especially at the windows of the rear car. These
T-junctions have now been made explicit, and this helps
in the interpretation of the occlusion relationship
between the cars.

Discussion.
We have demonstrated a modification to the
conventional Canny operator, which overcomes the
failure to detect junctions, by a purely local analysis of
the gradient vector.

It has previously been suggested that recovery of
connectivity should be left to higher stages of vision,
whilst deriving the symbolic description of the edges, or
during subsequent grouping stages. There are two
arguments against this approach.

Firstly, it is unwise in principle to resort to higher
level constraints when information is available at a
lower level. For example a connected sequence of edges
may contain a dog-leg which is too insignificant to be
identified on its own, but which may be correctly
segmented if a T-junction is detected at one of the
corners. An example occurs in Figure 7 where the rear
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Figure 7. (a) Original Image
(b) Results of the Canny operator
(c) Results of the modified operator

roof of the VW runs into the window of the Estate car
Figure 7(b), but is connected along the back of the VW
in Figure 7(c).

Secondly, any additional ambiguity in the line
connectivity delivered by low-level processing
necessarilly increases the size of the search problem
encountered in later grouping stages.

Figure 8(a) illustrates the latter point by means of a
synthetic "Mondrian" image. The Canny operator
(Figure 8(b)) picks out connected sequences of edgels
which wander haphazardly along unrelated edges
between blocks of colour. It is difficult to segment the
blocks of colour on the basis of the edge evidence alone.
The modified operator (Figure 8(c)) successfully locates
most of the T-junctions in the image, and only fails at
junctions involving very short edges. This greatly
facilitates the discovery of closed polygons, which are
the boundaries of the separate blocks.

Our demonstrations show that there is information in
the smoothed gradient vector which is not used by the
Canny operator. Edge detectors are commonly used in

Figure 8. (a) Original Image
(b) Results of the Canny operator
(c) Results of the modified operator
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model-based vision to identify focus features [11] or cues
[12], which invoke hypotheses of known objects. In our
experience, this stage of feature analysis is bedevilled by
the imprecision of the low-level processing. Any
improvement in the data-driven extraction of features is
greatly to be desired.
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