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In this paper we present a fast, highly efficient and robust
visual tracking process for multiple moving objects, using
stereo image sequences taken from a stationary camera.

The algorithm assumes that object motion is restricted to
a horizontal plane ( for ezample motion of cars on roads
or humans walking). Dense stereo image sequences and
the Visualised Locus method [1] [2] (in which each
image sequence is first sampled to produce a 2D spatio—
temporal cross-section image) are used to ensure temporal
correspondence without search. Edge segmenis in the left
and right spatio-temporal images are then maiched. Ad-
ditional stereo matching constraints are derived by using
motion and temporal continuity to reduce the number of
ambiguous matches. Speed is achieved by only processing a
single spatio-temporal cross-section tmage from each im-
age sequence.

The algorithm succeeds in tracking objects in space and
time moving against arbitrarily complex backgrounds and
in the presence of occlusion, disappearance and reappear-
ance of object features. The output of the algorithm is the
3D position of moving objects as a function of time.

In real dynamic scene analysis the considerable changes in
image structure that can occur as a result of object motion
(such as the occlusion, disappearance and reappearance of
object features) are major obstacles to the successful ap-
plication of existing “Shape from Stereo” [3] and “Shape
from Monocular Motion” [4] techniques to the problem of
3D object tracking from visual data. Monocular image
sequence analysis,for example, has the following inherent
difficulties: the Temporal Correspondence problem in
obtaining optical flow locally [4] or matching tokens in
discrete views; a Speed—Scale ambiguity which makes
it impossible to determine 3D structure and motion in
absolute terms for a monocular observer viewing unfamil-
iar object;and a restriction to rigid body motions which
usually require the segmentation of images into parts cor-
responding to objects with the same rigid body motion.
These methods perform poorly with respect to accuracy,
sensitivity to noise, and robustness in the face of er-
rors. This is because it is difficult to estimate optical flow
accurately [5], or to extract the position of feature points
such as corners in the image. In particular motion of ob-
Jects towards the camera (motion in depth) is sensitive to
noise since the image velocities are small. Also features
can not lie in a plane (and some other special 2nd de-
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gree surfaces) since coplanar points lead to a degenerate
system of equations [6]. In the image sequence analysis
of human motion, for example, the features of interest
such as the limbs are nearly coplanar. Human motion is
not strictly rigid body motion. An additional practical
problem is that most applications of visual tracking re-
quire the real — time processing of large volumes of data.
For most existing algorithms this requires special purpose
hardware.

Stereo vision can be used independently of motion analy-
sis in a dynamic environment to determine the trajectory
of an object in space by taking successive stereo snap
shots, determining object locations at each instant and
combining these locations into a trajectory [7], [8]. The
most difficult part of the processing concerns the Corre-
spondence problem : what to match and how to match it

[3].

The correspondence problem is particularly difficult in the
presence of occluding boundaries and semi-transparent
surfaces such as fences or windows . With dynamic scenes
the disappearance and reappearance of object and image
features may make matching and the interpretation of 3D
structure instantaneously ambiguous or impossible. An
additional drawback in repeating the stereo vision pro-
cessing at each time instant is that large amounts of data
processing ( both time and volume) are required. A con-
siderable saving in data processing can be achieved by
exploiting knowledge of motion. Ideally only the edges of
objects in motion need be matched and the depth map can
be updated. Of greater interest however is whether mo-
tion can interact with stereopsis at the level of matching
to help disambiguate false matches. Poggio and Poggio
[3] note that image motion may be able to aid stereo in
the matching process.

Motion and Stereo Fusion

Both stereo vision and structure from motion have typi-
cally been treated as separate parallel processes. However
each has inherent difficulties and so it seems logical to at-
tempt to combine them into a single system. Jenkin and
Tsotos [9] and Waxman and Duncan [10] have attempted
to unify stereo and motion analysis in a manner which
helps to overcome the others shortcomings.

Jenkin and Tsotos [9] describe a stereo vision system
which will track special extracted object feature points
in 3D space over time. It uses the 3D interpretation of
the feature point velocities to help in the stereo matching
process. Even with a sparse feature set (extracted with
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the Moravec interest operator [7] ) the algorithm requires
an extensive search in both time and space and this makes
it unsuitable for real-time processing.

Waxman and Duncan [10] have proposed an integrated
stereo-motion analysis beginning with the determination
of image flow and using correlation between relative im-
age flow ( binocular difference flow ) and stereo dispar-
ity locally in establishing correspondence. However this
method suffers from the problems of estimating optical
flow and it requires finely textured smooth surfaces which
can be approximated locally as planar. Its application to
long real image sequences has not been tested.

As mentioned above temporal and stereo correspondence
are severe problems and limit the usefulness of existing al-
gorithms to applications of visual tracking. An additional
practical problem is the need for real time processing. If,
however, we assume a restricted class of motions and pro-
cess a dense sequence of images so that temporal conti-
nuity is guaranteed ( as in Bolles’ Epipolar-Plane Image
Analysis [11] ) it is possible to greatly simplify (and in
a special case avolid) the temporal correspondence prob-
lem. If in addition we use motion and temporal continuity
as additional matching constraints, the stereo correspon-
dence problem can also be considerably simplified.

In this paper we present a fast, highly efficient and ro-
bust visual tracking process for multiple moving objects,
from stereo image sequences taken from a stationary cam-
era. Objects moving against arbitrarily complex back-
grounds and in the presence of occlusion, disappearance
and reappearance of object features are tracked in space
and time.

The algorithm presented assumes that object motion is
restricted so that its height above a horizontal plane is
constant ( for example motion of cars on roads, humans
walking etc). We show that dense stereo image sequences
and the Visualised Locus method [1] [2] (in which each
image sequence is first sampled to produce 2D spatio—
temporal cross-section images ) can be used to ensure
temporal correspondences automatically without search.
Additional stereo matching constraints are derived by us-
ing motion and temporal continuity to reduce the number
of ambiguous matches. Computational speed is achieved
by only processing a single spatio-temporal cross-section
image from each image sequence.

Temporal Correspondence: The

Visualised Locus

Theory

Consider the perspective projection of an object point
onto a planar screen normal to the z-axis. We model
the camera as a pin hole with centre at C(0, H, f) and
with focal length f. A point P(X,Y, Z) on an object will
be projected onto a point p(z,y) on the image plane such
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that (figure 1a):
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If the object moves the projected point’s position is a
function of time, p(z,y,t) :

L (1)

2= I @)
and in the image y direction:
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If a sequence of images is taken in rapid succession and
piled up sequentially with time, we can construct a 3-
dimensional spatio-temporal image (figure 1b). If tempo-
ral continuity from image to image is ensured the image
of object point P, p(z,y,1), in general forms a 3D locus
in this 3D image. This locus is referred to as the Visu-
alised Locus since it is the locus of the projection as
a function of time and if the object point P is occluded
or goes out of the view of the camera the image point p
disappears [1] [2].

In the case in which the motion of P is constrained to
move on a plane Y (t) = H (ie. at the same height as the
optical centre), the visualised locus lies on a plane in the
3D image. For this special case, the projection of a point
in space is constrained to the same single scan line (raster)
of the image at all times. The 2D image defined by this
plane is a spatio-temporal image. It is a —t cross -section
of the 3D image at y = 0. It can be synthesized by storing
the scan line containing the optical centre (y = 0) of each
image of the sequence and arranging them sequentially in
order of time (figure 3).

Other researchers have constructed similar images: [12],
[13], [11]. As Bolles et al noted, even though the spa-
tial images which were used to construct it contain com-
plex shapes and intensity changes (figure 2), the spatio—
temporal image as a consequence of smooth motion is
composed of simpler image structures, regions and edge
segments (figure 4).

Higher level properties can also be inferred from the syn-
thesized image. The relationship between loci of points
on different objects can be used to determine their rela-
tive motions. The disappearance and reappearance of a
locus indicates occlusion and by looking at neighbouring
loci, the occluding object can be determined.

Unlike Bolles’ Epipolar-Image analysis, however, the
spatio-temporal cross-section images used in this method
are generated from a stationary camera with multiple
moving objects and non-linear motion. Accurate knowl-
edge of the motion is not required. The original contribu-
tion of this paper is the stereo matching of edge segments
between spatio-temporal cross-section images generated
from the left and right camera image sequences.



Extraction of Visualised Loci

The loci of points on the boundaries of regions with high
contrast in an image appear as edges in the synthesized
spatio—-temporal cross-section image. The extraction of
these loci thus involve procedures for edge detection and
enhancement; the fitting of line and curve segments to
these edges; and the merging of segments belonging to
the same locus based on temporal continuity. These al-
gorithms are described in [2]. The latter step is required
because due to occlusion, or camouflage ( object has same
intensity as background ) and noise the extracted loci
may be fragmented. Where possible the fragments are
linked by linear interpolation across “missing” segments.
This procedure is based on proximity of the fragment end
points and attempting to ensure smooth continuous loci.
This latter step is not always possible. It is not essential
but as mentioned below the disambiguating power of the
proposed matching algorithm increases with the length of
the extracted loci.

The visualised loci of points on stationary objects appear
as straight edges with no time gradient in the synthesized
cross-section image . It is therefore very easy to distin-
guish between the loci of stationary objects and moving
objects, regardless of the complexity of the background.
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Figure 1. Stereo visualised locus method:
a) camera geometry b) 3D spatio-temporal images with cross-
sections showing visualised loci
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Stereo Correspondence
Stereo Visualised Locus Method

If we observe a scene with a stereo pair of cameras and
synthesise a spatio-temporal 3D image for both the left
and right image sequences there exist 2 visualised loci
corresponding to the same point P : pi[zi(t), v(t)] and
pr[z,(t), yr(t)] . If these left and right loci can be correctly
matched (stereo correspondence found) the depth as a
function of time, Z(t), and hence the position ( X(t) and
Y (t)) can be determined for a calibrated camera set by
triangulation.

For the special case in which the motion of the body is
constrained to a horizontal plane and the cameras are at
the same height, the 2 visualised loci of an object point
at the same height as the optical centres are constrained
to a single plane in the 3D block of data (figure 1). The
visualised loci ( z;(t) and z.(t)) can then be automati-
cally extracted from the 2D spatio-temporal cross-section
image for each image sequence.

The dynamic stereo correspondence problem is then to
match the visualised loci in the left spatio-temporal cross-
section image with those in the right image. The stereo
matching algorithm is an extension of edge-based tech-
niques to edges with time as an additional dimension.

Parallel camera geometry is not necessary. Any camera
geometry can be used that ensures the camera scan lines
are horizontal (i.e. camera tilt and convergence are al-
lowed). This is because the epipolar plane for an object
point at the height of the optical centres will always be
horizontal.

Search for correspondence

For cameras with parallel optical axes, the relative posi-
tion of corresponding points in the left and right image are
geometrically constrained by the epipolar constraint
and by:

(4)

which is the ordering constraint relative to a point
at infinity. This constraint expresses the portion of the
epipolar line in the other image on which a potential
match may be found. An additional constraint is that
of uniqueness: each matching primitive should match
at most one primitive from the other image.

IPI 2 "BP:-

In the dynamic stereo problem the epipolar constraint is
used to generate the left and right spatio—temporal cross-
section images — corresponding rasters are epipolar lines
for a given time (figure 3). The matching primitives are
portions of the visualised loci and we extend the above
conventional constraints to encompass temporal conti-
nuity. Namely instead of matching at a single time ( ie.
matching edge pixels along corresponding rasters of the
cross-section images), we apply the matching constraint
to the visualised locus for all time. The search for cor-
responding points in left and right images is also con-



siderably reduced by only considering the loci of moving
objects.

The search initially finds portions of loci in the left and
right images which co-exist (overlap ) in time (epipolar
constraint); which satisfy the constraint of equation (4)
for all common times and which have similar x—direction
profiles. Multiple correspondences are reduced by ensur-
ing that each locus in the left image has at least one
corresponding candidate for matching in the right image
(uniqueness). If ambiguous matches still exist pairs are
chosen which have maximum time overlap and whose dis-
parity changes smoothly with time.

These matching constraints were sufficient for our exper-
iments. Unambiguous correspondence is not guaranteed.

Although it is possible for the matching strategy to be
used on static edges there is no advantage over existing
stereo algorithms in using the proposed matching algo-
rithm for static edges. In fact the algorithm’s disam-
biguating power will be poor with static edges since in
this case it is strictly matching along epipolar lines only
and it will be inferior to algorithms which use figural con-
tinuity [14] or local support [15].

Results

Eight frame samples of an office scene containing 2 peo-
ple moving along the floor are shown in figure 2. The
scene was observed for 8.5s ( 512 images (fields) at video
rate) with a stereo pair of calibrated TV cameras [16]
with a long baseline of 0.340 m and optical centres at
1.2m. One person is occluded for part of the observation
period. 512 x 512 spatio—temporal cross-section image are
produced from 1 scan line (average of a swath of 7 lines
for robustness ) from each image for both left and right
camera image sequences (figure 4). This operation can
be performed in real time. For both left and right cross-
section images: Edge detection (cpu time 2-3s); Segment
labelling and curve fitting (cpu time 10s); and the extrac-
tion and description of the visualised loci (cpu time 3s) are
performed on a Sun-3/260 workstation (figure 5). The ex-
traction includes merging fragments of loci across “miss-
ing” edges to give long continuous loci (shown as dashed
lines). Correspondence and determination of depth was
then carried out. The algorithm’s output is a plan view
of the 3D locus (X-position and depth,Z, Y-position as-
sumed fixed) as a function of time. This is shown in figure
6. Solid lines correspond to visible features. The dashed
lines correspond to features which disappear and reappear
as a consequence of occlusion or camouflage or noise.

Additional examples of stereo image sequences of office
scenes and the tracking algorithm output are presented
in figure 7 and figure 8 (output) for a scene in which one
person overtakes the other and figure 9 and 10 for a person
moving towards the camera in front of a parallel bar fence.

In the last example the object features are continually
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disappearing and reappearing and the loci are modulated
by an approximately periodic function as a consequence
of arm motion modulating the body width as seen by
the cameras. At any time instant existing static stereo
matching algorithms would fail to find the correct corre-
spondence or produce ambiguous results. The algorithm
presented successfully tracks the moving object behind
the fence by using temporal continuity to predict where
hidden points are based on the object’s motion history.

Conclusions

A method using stereo image sequences to automatically
detect and track the 3D motion of objects has been pre-
sented. It overcomes the problems of large data storage
and processing by processing the single spatio-temporal
cross-section image of the image sequence which contains
the visualised loci (the locus of image points in time) of
object points at the same height as the optical centres of
the cameras. This is possible if the motion is restricted
to a horizontal plane and makes unnecessary the need for
searching for temporal correspondence. Stereo correspon-
dence between left and right camera images is also greatly
simplified by using motion as a cue to suppress the back-
ground and by modifying the stereo matching constraints
to encompass temporal continuity.

The algorithm succeeds in tracking objects in space and
time moving against arbitrarily complex backgrounds and
in the presence of occlusion, disappearance and reappear-
ance of object features. The correspondence techniques
used establish matches using only partial information and
make predictions where invisible (hidden) points are given
their past motion histories and the motion of their visi-
ble neighbours. Stereo matching in the presence of partly
transparent objects in the foreground ( for example fences
with parallel bars) has been demonstrated.

The algorithm is robust to calibration errors, image noise
and deviations from perfect rigidity ( eg. presence of ex-
tremal boundaries of curved surfaces or the motion of hu-
man body). It also works well with large stereo baselines
and for long image sequences. It was tested on a variety
of scenes to track the 3D motions of humans moving along
the ground in various directions relative to the camera.

The motion tracking scheme presented will only correctly
track points whose true motion is in the horizontal plane
containing the camera optical centres. The resulting al-
gorithms are simple and fast and can handle object oc-
clusion, disappearance and reappearance. The output is
sufficient for determining the number of moving objects
in a scene and their general motions.

The methods presented can be extended to general 3D
motions. This however involves a more difficult temporal
correspondence problem in order to extract the 3D visu-
alised loci from the spatio-temporal block of data. The
stereo correspondence problem will however be simplified.



Figure 2. 8 samples from left camera image sequence (video
rate)

Figure 4. Left and Right 2D cross-section spatio-temporal
images showing visualised loci of object features at the same
height as the camera centres
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Figure 6. Output of tracking algorithm showing 3D loci of
moving objects (plan view) in scene of figure 2. Two loci are
shown for each body. One person is moving from left to right
while the other is moving from right to left and away from
the camera. Solid lines correspond to visible features.
Dashed lines correspond to features which are occluded or
have the same intensity as the background.

Figure 5: Extracted Loci on left and right spatio-temporal
cross-section images.

Full lines correspond to fragments of the visualised loci and
are linked by dotted lines where the visualised locus
disappears due to occlusion, camouflage or noise.



Figure 7. Left 3D spatio-temporal image for scene in which
one person overtakes the other
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Figure 8. 3D loci of moving bodies (plan view): One person
(labelled 1) overtakes the other (2).

Figure 10. 3D loci of a person approaching camera behind a
fence. The 2 loci shown correspond to the extrema of the left
and right arms. They are modulated by an approximately
periodic function due to arm motion.

Figure 9. First and last image of left image sequence of a
person approaching the cameras behind a fence.
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