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Animate vision systems, biological or robotic, employ gaze
control systems to acquire, fixate, and stabilize images. Our
goal is to guild robust gaze control behaviour from cooperating
lower-level visual reflexes. Predictive control strategies can
cope with time delayed, multi-rate, and interacting controls.
Solutions are explored through simulation incorporating ten
primitive gaze control capabilities, more or less comparable
to subsystems in primate gaze and head control. Versions of
several of the subsystems have been implemented on a binocu-
lar robot. Smith prediction is the basic paradigm, using kine-
matic simulation of the agent and optimal filtering to predict
world state.

One of the goals of artificial animate vision [2,3] is to design
a systems architecture in which multiple objectives (such as
moving and observing) can proceed in parallel. One common
premise is that cognitive processes at high abstraction levels
rely on a hierarchy of lower-level "skills", "reflexes", and ac-
tive vision capabilities that autonomously keep the agent out
of trouble and perform generally useful vision computations
[7]. Another premise is that active control over and percep-
tion of an agent's own state (proprioception) makes many
problems in perception, planning, and acting easier. A gaze
control system manages several basic, interacting head, eye,
and even body motion capabilities, with the aim of support-
ing purposeful (or default) activity. One basic activity is the
visual acquisition of an object. The action can be reflexive,
in response to a stimulus deemed interesting, or under con-
trol of a higher level engaged in planning or acting. Another
basic ability is to pursue or track an object moving relative
to the observer: Stabilization of the image on the sensor is
necessary for high resolution imaging, and the resulting pro-
prioception (i.e. motor commands that effected the tracking)
provides information about object motion. From the point
of view of control theory, a gaze control system has two main
technical problems: the interaction of component subcontrols
and delay. Both biological and robotic systems can easily
have delays that are of the same order of magnitude as the
timescale of the actions.

Gaze control mechanisms have long been studied in biologi-
cal systems (there are extensive references in [12,5,19]). Much
of the work concentrates on how biological systems solve the
two basic technical problems mentioned above. This paper
investigates predictive mechanisms as a solution for the prob-
lems primarily in a robotic context, but occasionally relates
the results to some findings and theories from primate gaze
control.

One way to cope with delays is to use strictly open loop
control. The other approach, more common in engineering
applications, is to use predictive and modeling techniques to
anticipate the state of the plant, its input, and indeed the
world [14], thus coping with both delays and interactions.

Smith's principle [21,22] is the basic tenet that the desired
output from a controlled system with delay T is the same as
that desired from the delay-free system, only delayed by T.
The principle leads to several techniques for controlling de-
layed systems. Smith's principle may be coupled with signal
synthesis adaptive control [1], which predicts object motion
to allow more accurate responses. Kinematic and dynamic
models for plant prediction can be known apriori or derived
from learning and used to replace feedback [13]. The solution
described here uses Smith prediction to integrate multiple
controls with delays. It uses signal synthesis adaptive control
with flexible and general techniques of kinematic simulation
to predict the state of the plant and variance-minimizing opti-
mal filtering to predict the state of the world. At least in sim-
ulation, the resulting predictions have three effects. Delays
are overcome, interactions are overcome, and performance is
improved. Predictive techniques seem to form a sound basis
for the design of integrated, high performance sensorimotor
systems.

THE ROCHESTER ROBOT

Research in artificial animate vision has been made possi-
ble by recent technical advances in real-time computer vi-
sion and control. The area still includes a wide spectrum of
problems from hardware design through software for parallel
systems support and applications, to the integration of het-
erogeneous computers, sensors, and effectors into behaving
systems. Many laboratories are developing similar systems
to investigate these issues and to take advantage of the new
technologies, and it seems that complex visuo-motor systems
will be the rule in the robotics laboratory of the near future.
The usual current setup has controllable sensors (often bi- or
trinocular TV cameras, perhaps sonar) and powerful parallel
computation, including frame-rate image analysis hardware.
Sometimes the sensors are mounted on a roving cart.

Rochester's binocular robot head is mounted on a six de-
gree of freedom arm. The two cameras are on a common
tilt platform, and have independent pan axes. The hardware
is capable of motions comparable to primate performance
(about 1 m/sec head velocity with less than 1 mm. posi-
tioning accuracy, and 300 degrees/sec camera rotations with
.14 degree positioning accuracy). The camera controllers are
capable of supporting full-speed gaze-shifts to random direc-
tions at a rate of 5/s. The camera and robot controllers
support several types of motion, but the frequency responses
of system components under various forms of control have
not been measured. The aperture, focal length, and focus
of the cameras are not yet controllable. The video output is
processed by a Datacube MaxVideo pipeline-parallel image
processing system that can do many low and intermediate-
level vision operations at 30Hz (video frame rate). The host
computer for the system is currently a Sun/3 computer but
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Figure 1: The laboratory computer organization. The 24
node Butterfly will replace the host Sun, and faster interfaces
to the Puma and MaxVideo are being installed.

will soon be a 24-node Butterfly Parallel Processor (BPP).
Each node of the BPP is an M68020 processor with M68881
floating point coprocessor and 4MB of memory. There is
fast, switch allowing the processors to share memory. The
plan is to implement the control algorithms in the BPP, us-
ing multiple nodes as necessary for speed, with the Datacube
furnishing real-time input. A real-time package for the Psy-
che operating system will support the applications. LISP
planning programs can communicate with robot applications
code over the ethernet. Fig. 1 shows the current hardware
organization.

BASIC CONTROLS

This paper deals, unless otherwise explicitly noted, with sim-
ulated capabilities and occasional psychophysical and phys-
iological data. Early work [8] introduced five control sys-
tems, four of them resembling capabilities implemented on
the Rochester Robot, and functionally reminiscent of primate
capabilities of the same names.

Saccadic: an eye control to produce rapid gaze shifts,
"sampled" at a relatively coarse interval with respect to the
discrete simulation time increment, and driven from posi-
tional retinal error (distance from retinal origin). At each
activation it produced a sequence of maximum-speed pan and
tilt velocity commands that was calculated from approximate
kinematics to center the image in the retina.
Smooth pursuit: a proportional, integral, derivative (PID)
eye control driven by the retinal positional error of the ob-
ject's image, to follow objects in motion relative to the eyes.
This and the following controls are "continuous" in that they
are computed at every simulation time increment - we use
the quoted "continuous" and "sampled" in the sequel to make

this distinction in a discrete (sampled-data) implementation.
Vergence: a PID eye control to reduce disparity between
left and right images.
Vestibulo-ocular reflex (VOR): a proportional-gain eye
control to oppose head motion with contrary eye rotation,.
Head rotation is easily canceled, and this capability also in-
cludes a version of "otolith-ocular reflex" that compensates
for translational head motions using information about ob-
ject range [6,11]. Its input is not sensory, but an "efferent
copy" of the head translation and rotation command.
Head compensation: a proportional-gain head-control sys-
tem driven by head-relative eye position that rotates the head
in the direction of eye rotation to keep the eyes centered
and away from their mechanical stops. This capability may
not mirror any named biological one, but it does reflect a
widespread primate tendency to move the head, if allowed,
during pursuit and eye saccades.

Fig. 2 illustrates the cumulative effect of simply superim-
posing control capabilities: each operates independently and
their outputs are simply summed at the effectors. Delays are
zero, latencies (except for saccades) unity. Fig. 3 shows the
dramatic effects of control delay on the system. The smallest
delays, applied uniformly or to just one control, destabilize
the system seriously.

ENHANCED CONTROLS

In later work some improvements were made to the controls.
This work is more fully described in [9]. All controls originally
operated from retinal coordinates. However, predictions of
object position in head or LAB (laboratory) coordinates are
needed to predict retinal images. Head rotations, pans, and
tilts all induce camera origin translations due to the geom-
etry of the head, and non-retinal representations are more
robust (as when the object temporarily is lost). Version* of
pursuit, vergence, and eye saccadic capabilities were added
that use spatial information. There was no capability for
estimating the state of objects moving in LAB (relative mo-
tion was produced with a static object and observer motion.)
A pipeline of object state descriptions is maintained using
variance-minimizing filters to predict object state from obser-
vations. The head compensation reflex was the only head
control. The system was given 'liead saccade" and "head
pursuit" controls. The eye saccade control algorithm was
unsophisticated, and there was no significant head and eye
cooperation for quick gaze shifts. Four fast gaze-shift algo-
rithms involving both head and eyes were investigated. The
two modes of operation (pursuit and saccadic) were simplis-
tically assumed to correspond to inflexible combinations of
lower level capabilities. All controls can now be activated and
deactivated independently.

The later work is not committed on several issues, such
as whether the eye saccadic system should control one or
both eyes. Binocular eye saccades are easy to implement, but
there are many other ways that the eyes can cooperate during
gaze shifts, depending on technical considerations such as
the possibility of visual computation during the shift, how
the vergence control is specified, etc. We likewise shall not
address issues of orchestrating the smooth transition between
saccadic and pursuit (or other) tasks. Considerable work is
still needed on the topic of smooth blending of subcontrols,
which forms the foundation of motor skills.
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Figure 2: Increasingly effective delay-free control results
from superposition of nonint eroding controllers, (a) Track-
ing only: The left (dominant) eye pans and tilts, inducing tilt
in the right eye. The tracker uses a position error signal. The
right eye gets no pan signal, and its horizontal error accrues
from target motion. The left eye tracks successfully until it
hits mechanical stop at tick 14. (b) Add vergence and head
compensation: This control is to keep eyes from hitting me-
chanical stops by turning the head in the same direction as
the tracking motion. A less-desirable effect is to amplify the
tracking signal, overcompensating and destabilize the track-
ing, (c) Add VOR, which effectively compensates the head
rotation with eye rotations.

NO SIMULATION: ALL FIEFIEXES. OELAY 0 BUT TRACK DELAY I

Figure 3: The no-delay controller applied with zero delay in
all controls except tracking, which has a delay of one tick.
Ideally this graph should be a delayed version of Fig. 2(c).

DEALING WITH DELAYS

The Smith predictor incorporating the object state predic-
tions is shown in Fig. 4. Its derivation appears, for instance,
in [8,14]. The basic idea is to have a zero-delay feedback
(path C) based on simulation. The model-delayed simula-
tion data (path B) is compared with the actually-delayed
data from the plant (path A): the difference (at D) is zero
for perfect, simulation, so it provides information about the
simulation adequacy and (if slowly varying compared to the
control delays) can compensate for inaccurate modeling. A
more satisfactory approach (not yet implemented) is parame-
ter adaptive control: compute sensitivity derivatives and use
the signals from the plant (path A) and the difference be-
tween predicted and actual behavior (path D) to adapt the
model. This is the dual problem of model-reference adaptive
control, which forces the system to conform to the model.

The work described here uses the following interacting con-
trols algorithm [8], which assumes each controller knows its
own delay T, and the delays of all the other controllers in the
set S that share an output with it. Look ahead the maximum
delay M of any controller in {S} and retrieve the predicted
robot and control stales for that time. Apply the control ap-
propriate for these future states at (possibly future) time M-T.

In early work, only the kinematic simulation existed, and
so in dynamic vision situations, prediction could only be
accurate if the simulated robot moved while the object re-
mained stationary. Fig. 5 shows how the interacting con-
trols algorithm successfully stabilizes performance (compare
Fig. fig:nodel4) even when several subcontrols are at work,
all with different delays. Prediction fails if knowledge of the
world is inaccurate: Fig. 6 illustrates the need for prediction
of 3-D object motion. The need is addressed with dynamic
models and optimal filter prediction for moving objects.

OBJECT PREDICTION

In contrast with the explicit kinematic simulation used to
predict the system state, standard optimal (i.e. variance-
minimizing) filtering techniques are used to predict the po-
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Figure 4: The Smith predictor control. The CONTROL
block represents all control systems, and DELAY their in-
dependent delays. Kl and ICS are gains to weight the delayed
and non-delayed modeled error signals. The a — /? filters es-
timate object and image states, and adoptively synthesize the
signals for the control system. Dotted boxes show the parame-
ter adaptive control to update model in response to differences
with the plant (not yet implemented).

Figure 5: To be compared with Figs. 2(c) and 3. The inter-
acting control algorithm dealing successfully with a mixed set
of delays.

INTEHACTINO CONTROL: MIXEO DELAYS. BAD TARGET MODEL

Figure 6: With prediction based only on the robot's motions
asstiming a stationary object, actual object motion leads to
misprediction and destabilization. Here the object is moving
toward the robot. As it gets close its retinal velocity "unpre-
dictably" increases and the controls cannot respond rapidly
enough.

sition and velocity of the world object. The simulation has
been run with extended Kalman filters, (linear) Kalman fil-
ters, and time-invariant filters as predictors. It is standard
practice with optimal filtering to use statistical techniques to
see if the current dynamic model fits the data, and if not to
substitute another model [4,10]. This "variable dimension"
approach is the predictive filtering equivalent of the signal
synthesis adaptive control scheme [1], and the block diagrams
of the two systems are basically the same.

For this work, we assume a constant velocity model: start-
ing with some initial value, the object's velocity in LAB
evolves through time by process noise of random accelera-
tions, constant during each sampling interval but indepen-
dent. The cumulative result of the accelerations can in fact
change the object's velocity arbitrarily much, so we model a
maneuvering object as one with high process noise. For this
work we assume position measurements only are available,
subject to measurement noise of constant covariance.

Assume the object state (its position and velocity) evolves
independently in each of the (X, Y, Z) dimensions. For in-
stance, in the Y dimension, it evolves according to

vhere
1 A<
0 1

for sampling interval A«, and y = [Y, Y]T. The equations
for the other two spatial dimensions are similar, and in fact
have identical F matrices. Thus for the complete object state
x = [X, X, Y, Y, Z, Z]T, F is a (6 x 6) block-diagonal matrix
whose blocks are identical to Fy. The error vector v(jfc) obeys
£(v(*)vT(») = Q6k}.

The a — /? filter for state prediction has the form

where x(fc+l|A:-f 1) is an updated estimate of x given z(fc-r-l),
the measurement at time k + 1. Here we assume that z(fc-fl)
consists of the three state components (X, Y, Z) (but not
(X, Y, Z)). The state estimate is a weighted sum of a state
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Figure 7: The angular pointing error of the left eye while
pursuing a moving object, (initially off center in the visual
field), measured to the true object position. Light squares:
results with current noisy image data. Dark squares: results
with output, of the a — j3 filter.

x(fc + l|fc) predicted from the last estimate to be Fx(fc|fc)
and the innovation, or difference between a predicted mea-
surement and the actual measurement. The predicted mea-
surement z(fc + l|fc) is produced by applying (here a trivial)
measurement function to the predicted state.

The a — 0 filter is a special case of the Kalman filter. For our
assumptions, the optimal values of « and /? can be derived
(see [4], for example) and depend only on the ratio of the
process noise standard deviation and the measurement noise
standard deviation. This ratio is called the object's maneu-
vering index A. The constant covariances assumed by time-
invariant filters may suffice for sensors stationary in LAB,
but a head-mounted depth sensor would very likely require
the full power of a Kalman filter.

The incorporation of an optimal filter into the control loop
was motivated by the necessity of predicting object state for
the Smith predictor. The filter, however, also has a noticeable
and beneficial effect on pursuit performance (Fig. 7), and
indeed it seems that humans may use stochastic prediction
[16,18].

EYE-HEAD SACCADES

This section describes four versions of cooperating eye-head
motions. A first example of an eye-head sacca.de is provided
by simply running the "sampled" eye saccades simultaneously
with the "continuous" VOR and head-compensation reflexes
([8]). The result (Fig. 8(a)) is similar to that which once was
claimed (under the "linear summation hypothesis") to hold
in primates, viz. that their eye rotational velocity measured
in LAB is kept constant, (eye saccadic velocity is decreased
by head saccadic velocity) [17]. However, in primates, the
linear summation hypothesis has been contradicted by find-
ings indicating eye-head gaze shifts outperform eye saccades
alone (Fig. 8(b)) [20]. Certainly in a robotic context a speed
improvement is attainable, and the following three versions
are intended to outperform the first one, and are more fully
described in [9].
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Figure 8: (a) Robot gaze (butterflies), eye (light squares),
and head (dark squares) angles showing linear summation ef-
fect arising from reflex interaction. Here the eye saccade con-
trol is active together with with head-compensation and VOR
reflexes. The combination of eye saccades with head compen-
sation and VOR forces the gaze velocity to be the velocity of
the eye saccade acting by itself. Time units are arbitrary and
chosen to illustrate the behavior, (b) Human gaze (G), eye
(E), and head (II) movements during 80 degree gaze shift. A
has no head motion, B has 80 degree head movement, and
gaze shift, is completed twice as fast.

The Gaze Feedback version is inspired by "local feedback"
physiological theories, and is based on "continuous" head and
eye position-feedback controls. A head saccade is simply im-
plemented as a pursuit operation, and cooperating eye-head
gaze-shifts are simultaneous head and eye pursuit. For vari-
ous reasons this version fails to achieve a speed improvement.
The Sampled Optimal version is a closed-form "sampled" so-
lution for full-speed eye and head movements. It depends on
an open-loop calculation depending on known constant head
velocities, and so is not robust against variations or distur-
bances.

The Simulated Optimal version uses the familiar pipeline
of predicted future states to maintain optimal speed and add
the "continuous" ability to deal with arbitrary velocity pro-
files as well as disturbances. The algorithm first computes
a head saccade by determining, for the x and y dimensions,
the direction to rotate and then driving at maximum veloc-
ity, stopping after there is a zero-crossing in predicted object
position (say at time k). The head position at time it - 1
may be closer to the object: the closest position is chosen.
The sequence of head-saccade commands is inserted into the
pipeline and the resulting changes to head and eye position
computed (these values overwrite existing values, as the sac-
cade is taken to replace previous control). Then the eye sac-
cade is computed exactly like the head saccade, except eye
position is computed by adding the head-relative eye veloc-
ity to the head velocity. To cope with disturbances, and to
implement successive ("catch up") saccades, the simulation
is placed in a loop that runs until the saccade is successfully
completed, checking if at any time a new calculation must be
performed. Fig. 9(b) shows a result from this control scheme.

107



(a)

Eye X Y Position

•20

(b)

20

•20 .

V

40

Figure 9: faj Z?ata /rom prtroate saccades with eye velocities:
undisturbed and disturbed (eyes dragged down to left) prior
to saccade but after stimulus has vanished, (b) Robot camera
(x,y) position for eye-only saccade to moving object, with
disturbance during 3 < k < 10 adding negative (z, y) velocity
before and during first part of saccade.

After reaching the object, the eye continues tracking the mov-
ing object. When macaque monkeys have their eye velocities
electrically disturbed after the target stimulus has vanished,
they successfully correct the saccade (Fig. 9(a)). The recal-
culation can sometimes be done during the latency period of
the original saccade, so the correction does not delay saccade
onset [15]. In the simulated system the control delay is un-
avoidable, but correction occurs with both eye and eye-head
saccades.
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