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A stereo algorithm for detecting and locating obstacles
raised above a ground plane is described. It is based on
applying a simple multi-model approach using hypothesis
tests to the grey levels of pre-processed stereo images.
The algorithm has been successfully applied to real
images captured from a moving vehicle in order to
recover putative obstacle locations.

1. INTRODUCTION

We describe an algorithm, called SWITCHER, for analys-
ing stereo images for the purposes of vehicle obstacle
detection. The algorithm has been developed as part of a
project! whose overall aim is the demonstration of a
stereo vision system capable of warning the driver, human
or automaton, of obstacles in the path of the vehicle that
constitute a potential hazard given the current vehicle tra-
jectory. It is assumed that the terrain over which the vehi-
cle is travelling is a reasonably even surface, such as a
path, road or factory floor.

In brief, SWITCHER finds disparity matches as follows:

(a) Each stereo image is first subjected to a stage of low
level image pre-processing which includes: image
rectification to parallel camera geometry without aliasing,
high pass filtering, and grey scale equalisation.

(b) A window of grey levels from the left image is incre-
mentally moved in 1 pixel shifts across the right image,
subtracted from the right image at each location, and the
variance of the differences so obtained is calculated for
each disparity shift. Shifts are restricted to the range
expected for obstacles protruding from the ground plane.

(c) A statistical test (the F-test) is used to decide which
disparity shift gives the smallest expected variance in the
differences produced by subtraction. This test is applied
sequentially to points along rasters and a decision is made
to switch from the disparity selected for the previously
considered window location only if there is evidence of a
significantly lower variance of the difference at a new
disparity value: hence the name SWITCHER for this algo-
rithm.

It is demonstrated using natural images collected from
vehicle-mounted cameras that SWITCHER is capable of

! We gratefully acknowledge the support of Mr A C
Sleigh of RSRE Malvern, who has arranged the funding for
this project. RSRE also provided the vehicle used under
the direction of Mr J Sherlock, and we thank Mr G Ed-
wards for his part in assisting with image capture,
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delivering a disparity map from which the scene coordi-
nates of a potential obstacle can be derived.

2. SPECIFICATION OF THE PROBLEM

The problem of detecting and locating obstacles raised
above a ground plane by stereo vision may be studied
within the following framework.

Defining any two matching image rasters
I(x) = s{x) + nfx)
r(x) = 5{x) + n{x) M

where x is the image coordinate of corresponding points
on the ground plane, /(x) and r(x) are intensities recorded
by the left and the right cameras respectively, and n/x)
and n/(x) are noise components presumed to arise from
camera noise, image capture, image pre-processing, etc,
When no obstacle is present, and taking s to be related to
the photometric properties of points on scene surfaces, we
make the following assumption

5i(x) = s5,(x) 2

That is, for the purposes of analysis, we assume that the
pre-processing stages are sufficient to eliminate any prob-
lems arising from the stereo projections failing to possess
photometric invariance. Experiments to date show that
this assumption is reasonable. Indeed we have obtained
good results for several images sequences without image
pre-processing other than rectification.

When an obstacle is present whose surface plane has a
uniform disparity d, then

51%) = 5,(x—d) (3)

and the problem will be specified as: find d and determine
the domain of x upon which eq.(3) holds.

3. SOME NOTATION AND ASSUMPTIONS

Initially, to simplify the description, assume that only one
obstacle is present along a raster. The extension of the
algorithm to several obstacles can easily be made. Also,
assume the disparities of the obstacle and the ground
plane are each uniform along a raster (this assumption is
not restrictive given a reasonably small window size).
The study will be carried out on a raster basis, i.e., the
image signals /(x) and r(x) are both one-dimensional. The
extension to two-dimensions is straightforward.
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Fig.1 shows the simplest case in which only one obstacle
with uniform disparity d across the raster is present. A is
the width of the obstacle along the raster.
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Fig. 1
For ease of reference in the following analysis, several
definitions are introduced. Let P,(x) and P,(x) be the
background and the obstacle image signals of the left ras-
ter respectively. Note that both of them are functions of
the pixel position x. Let GP, OC and OB be defined as
three regions of x with the following properties

GP = (x/ 5(x) = Py(x) and s,(x) = Py(x)} 4
OC = {x/ s(x) = Py(x) and s,(x) = P,(x+d)} ®)
OB = {1/ s{x) = P,(x) and s,.(x—d) = P,(x)} (6)
with d > 0.

Clearly GP represents the region of the ground plane
which can be seen by both cameras; in Fig.1 this is the
region where 1<x<a and a+d+A+l < x < M. Region
OC represents the occlusion part that can be seen by the
left camera but not the right; in Fig.1 OC is the region
where a+1 < x < a+d. The obstacle which can be seen by
both cameras but with a forward phase shift of the right
signal relative to that of the left is located in region OB;
this region is given by a+d+1 < x < a+d+A in Fig.1.

Now define various differences as follows
eo(x) = I(x) — r(x),
ey(x) = I(x) - r(x-1),

eq (x) = I(x) — r(x—d,,)

where d,, is the maximum expected disparity of an obsta-
cle, and the set ¢, to €4, Can be regarded as a multi-model

formulation.

4. OBSTACLE DETECTION

It is obvious from the above definitions that when no obs-
tacle is present, i.e. for all xe GP,

eo(x) = ny(x) — n,(x),
e1(x) = 5;(x) = s/(x=1) + nyx) — n,(x-1),

edm(x) = 5(x) — sx—d,,) + n(x) — n(x—d,)

Assume the noise signals n)(x) and n,(x) are normally and
independently distributed with zero mean and variance o2
and assume they are uncorrelated with 5; and 5,. Then the
zeroth difference e(x) is also normally distributed with

zero mean and variance 202. However, the variances of
the rest of the differences e(x), . .. ,edm(x) are all

expected to be higher than 202 unless the ground plane
has no texture. Similarly, for all xe OB, the differences
are given by

eo(x) = s(x) = 5,(x) + n(x) — n(x),
ea(x) = né{x) - "r(x_d)‘

edm(x) = 5(x) — s,(x—d,,) + ny(x) — n(x—d,)

and e4(x) becomes normally distributed with zero mean
and variance 202 The variances of the rest of the
differences are expected to be higher than 262 unless the
obstacle surface has no texture. The above observation
suggests the use of the variances of the differences as the
key to locate an obstacle and to determine its disparity.

A simple method to detect the position of an obstacle
would be to calculate the zeroth difference ey(x) only and
then set up a threshold such that if in some domain Q,
eg(x) is above the threshold for almost all xe(Q, an obsta-
cle may be present in Q. This is the basic idea used by
Mallot et al [1] in their obstacle detection method. It is
quick to implement, but does not provide information on
the disparity of the obstacle. Also, problems arise in set-
ting a threshold suitable for the particular image textures
presented by the scene under consideration. It was this
latter difficulty that led us to design SWITCHER, which
avoids the problem of setting thresholds by using a statist-
ical test. We are however continuing to investigate Mal-
lot et al’s approach, not least because of its simplicity and
low computational cost [4].

S. THE NECESSITY FOR A STATISTICAL
TEST

The method introduced here can recover disparity infor-
mation. The idea is to set up a window of size W on
differences e(x), i=0,1,....d,,, estimate the variance of the
differences in the window and then make comparisons.
The window size W is taken as an odd number for con-
venience, e.g., the k* window on the zeroth difference is
the set

1 A=l
{ eox), x=k 5 R S 3 )

Let €(x) be the i* difference after the mean has been
removed. The variance of this difference in the k* win-
dow can then be estimated by
k+(W-1)2

Y &)
=k—(W-1)2

87k, W) = —

@)
where

i=0,1,....d,,
As noted above, provided all xe GP in the k* window,
65(k,W) has the minimum expected value 262. Similarly,

provided all xcOB in the k* window, 8%k,W) has the
minimum expected value 202, Thus the exercise of locat-



ing an obstacle is reduced to finding the minimum
expected value of 67(k,W), i=0,1,....d,, at every window.
The disparity d at the k™ pixel of the left image will then
be given by

E[ 6%k,W) 1= min E[ 67(kW) ] ®)
1

where E[z] denotes the expected value of the random vari-
able z. However, when some x in the ¥* window lies in
the region OC, or some xc OB and some xeGP, the k*
window enters the occlusion parts and all variances of the
difgerences are expected to be greater than the minimum
20;.

The basic problem now is to solve eq.(8). Suppose in the
(k-1)* window, d=0; in the k* window, it is found that
6f, < & for some i=p#0. A decision has to be made here
on whether 62 < 63 by chance or 8} actually comes from
a population with expectation of mean less than that of
&%. The above situation clearly calls for a statistical test.
If, after the statistical test, it is found that &7 is not
significantly smaller than &%, then the disparity remains at
zero. Otherwise the decision d=p can be made. The sta-
tistical test used is the F-test where, in the above example,

&3k, W)
&2k W)

if certain conditions are met by /(x) and r(x).

6. APPLICATION OF THE F-TEST TO
OBSTACLE DETECTION

Consider the case when xe GP. (Similar arguments hold in
the case xe OB.) Then,

eo(x) = ni(x) — ny(x)

ex) = s)(x) — s,(x—1) + nfx) — nx—i)
where

i=1,.d,

To use the F-table to compare 620 and GJP for some i=p#0,
it is necessary that both e and e, are from two indepen-
dent populations with normal distributions. The above
two equations show that this requirement cannot be
satisfied completely. To see this, assume both s, and s,
are normally distributed with the same variance cZ. (On
the whole, this assumption will be valid.) Then the two
differences ey and e, are correlated due to the noise signal
n;, and their correlation is

Ohn

0 =
Pop(0) \oZ + 62 + R(p)2

where

R(p) = E[ (s{x)-5)(5,(x—p)-5,) ]

5; and 5, are the means of s; and s, respectively. Thus to

reduce their correlation, the image must have a
sufficiently large signal-to-noise ratio?
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The second point to note in applying the F-test is that the
F-table is produced on the basis of two populations having
the same variance. Hence in deciding if is
significantly smaller than &, the hypothesis to be tested is
that both of them have the same expectation. When this
hypothesis is accepted, it seems that the disparity could be
either 0 or p. At this point, the decision made in the
(k-1)* window will influence the present decision in the
k™ window, the argument being that a decision to change
disparity must be supported by adequate evidence.
Although such a criterion makes the change of disparity a
damped process, it reduces noise in the disparity estima-
tion. Indeed, in order to avoid too hasty switching to a
new disparity we have explored switching only if three
successive F-tests are all significant. That procedure can
be effective in avoiding false alarms but it is not always
necessary and its potential is the subject of current experi-
mentation [4].

The third point is that the decision on whether d'ﬁ is
significantly smaller than &3 is a one-sided test on the F-
distribution.

Thus, suppose in the (k~1)* window it was found that d=¢
(i.e. g is the presently chosen disparity value). Using H
for hypothesis and denoting the level of significance by
a, the steps taken to test the hypothesis of d=q in the k™
window, which together define the SWITCHER algo-
rithm, are as follows.

1. H:d=q.
2. Choose o.
3. Calculate 6%k, W), i = 0,1,....d,,.
4.  Find p such that G’E = min 87 .
1

5. If p=g, accept H.

6
6. Ifp#gq findF=—.

&

P

7. Reject Hif F > Fy_o(W-1,W-1) and set d=p.

Noise on the disparity estimation will be introduced for
the occlusion parts as none of the differences will have
the minimum expected variance. The occlusion parts are
transition periods between different disparities. Provided
the image has sufficiently large signal-to-noise ratio and
provided the window size is properly chosen, false esti-
mates of disparity for the occlusion parts should not result
in false disparity estimates when xe GP or x€ OB.

6.1. Two-dimensional windows

Instead of working on a single raster, the above study can
easily be extended to include several rasters provided an
obstacle present on these rasters has a reasonably uniform
disparity from one raster to its neighbouring rasters. In
fact, in the demonstrations which follow matching win-
dows straddling three rasters are used.

We have examined both theoretically and experimentally
the effects of varying the window size (Zheng et al, in

2 Experiments using artificial random dot textures have
shown that S/N ratios at least as low as 5:1 are satisfactory,
and experience with natural images suggests that even
lower values can be tolerated.



preparation). Our main conclusion is that the smallest
obstacle that can be reliably detected is about half the
width of the window but that vulnerability to noise
increases as window size is reduced. The choice of 17 x 3
provides a good compromise for the image sequences
investigated to date.

7. IMPROVEMENTS TO PERFORMANCE

7.1. The Spatial Coherence Constraint

Some of the road scenes we have investigated have very
low S/N ratios caused by poor dynamic range in the TV
camera response when dealing with low intensity regions
within otherwise brightly lit scenes. We have found that
the problem of the false alarms triggered in such regions
can be met in large part by employing a spatial coher-
ence constraint. The idea here is that certain ‘noise
spikes’ in the disparity map could not arise from the scene
without having given rise to above-ground plane dispari-
ties recorded ‘behind’ them unless the cameras happened
to be looking at a thin lamina so oriented that it is seen
‘edge on’, It is safe to assume that such circumstances are
unlikely. Hence the absence of supporting disparities
above the ground plane gives a firm basis for excluding
these noise spikes. We have found this constraint a high-
ly effective noise cleaner.

7.2. Exploiting the ground plane disparity

We have found it advantageous both in speed and in noise
elimination to limit the range of disparties that is
searched to about + 40 pixels. This range is ample to
capture obstacles in the images explored to date (but see
remarks in section 10 on exploiting temporal coherence
between successive stereo pairs).

8. EXPERIMENTS USING SWITCHER ON
NATURAL IMAGES

SWITCHER has been evaluated off-line using a selection
of 256 x 256 sterco image pairs recorded on video from
cameras mounted 52 ¢m apart and 67 cm above the
ground on the RSRE experimental vehicle.

8.1. Image Pre-processing

Each image pair was first subjected to a series of geometr-
ical and grey level transformations. The aim of this image
pre-processing was to recover the underlying texture
within each raster in a form most suited to the simple
grey level subtraction operation upon which SWITCHER
is founded.

First, a point transform rectification with anti-aliasing by
local neighbourhood Gaussian smoothing to sub-pixel acu-
ity was applied to the images to achieve zero vertical
disparity between corresponding left and right rasters.
Knowledge of the camera geometry required for this stage
was provided in the present experiments by an implemen-
tation of Tsai’s algorithm [3] in AIVRU’s TINATOOL
image processing environment [5].

Second, local variations in grey levels caused by pho-
tometric variance between images, low frequency drifts,
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etc were then reduced to acceptable levels by high-pass
filtering with a low cut-off frequency of 2 cycles/deg.

Finally, a two band log grey scale equalisation filter, with
each band symmetrically placed around the mean grey
level, was applied to enhance homogeneity of textural
information in the signals by emphasising their low ampli-
tude portions,

The last two stages are not always necessary for
SWITCHER to perform adequately. Experiments are in
progress to investigate when they are required [4].

8.2. Variance Residue Measurements &
Disparity Selection

vs 11 A 17 x 3 window from the left image was incre-
mentally moved in 1 pixel steps across the right image,
subtracted from the right image at each location, and the
variance calculated for-the differences so obtained. A
selected disparity value for each location was obtained by
comparing variances using the F-test described above with
a 5% significance level throughout.

9. RESULTS

The results from applying SWITCHER to two sample
stereo pairs are shown in figures 2 and 3. The rectified
stereo images are shown first (a - right image, b - left
image, as required for crossed-eye fusion), followed by
the results of high pass filtering and grey scale equalisa-
tion of the left image, (c). The disparity map returned by
SWITCHER is shown in (d), and (e) illustrates the result
of imposing on that map the constraint of spatial coher-
ence.

9.1. The Post Image Pair

In figure 2¢ the disparity map returned for a region where
the ground plane has no obstacle is clearly distinguishable
from a region where the post-like obstacle is present. The
smooth slanted obstacle disparity surface is bounded on
each side by noisy regions caused by occlusions. It has
proved a simple matter to estimate the x,y,z scene coordi-
nates of the obstacle from this map.

Comparison of the equation for the recovered ground
plane with that provided from the same images by a fast
Hough Transform disparity mapping technique [2], shows
that SWITCHER provides accurate disparity information.

9.2. The Kerb Image Pair

The right hand portion of the disparity map (3e) derives
from the ground plane and is again reasonably flat,
whereas the left hand portion from the kerb region is
noisy. The latter is probably due to differences between
the image projections of the high frequency grassy tex-
ture above the kerb, and a choice of window size unsuited
to the rapid changes in disparity in the grassy area. Even
so, SWITCHER'’s output is quite sufficient for the pur-
poses of obstacle detection assuming a knowledge of the
ground plane.
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Fig 2 (b)

Fig 2 (d)

10. CONCLUSIONS

The SWITCHER algorithm has been shown to be capable
of delivering information regarding obstacles from real
stereo images captured from a moving vehicle. In experi-
ments to date, in no case is an obstacle missed and prob-
lems posed by false alarms appear slight [4]. Work is in
hand to investigate versions of SWITCHER which
preserve these attributes while reducing as far as possible
the computational cost.

Information about a putative obstacle, delivered as a
rough estimate of the x,y,z scene coordinates of the obsta-
cle, could be used to control a region of interest process-
ing strategy aimed at checking in more detail the image
zone where the obstacle is recorded. Work is planned to
use SWITCHER in this way within a control architecture
that integrates information about the scene from a continu-
ous stream of stereo image pairs collected on a moving
vehicle, to provide advance warning about obstacles likely
to cause a collision given the current vehicle trajectory.



Fig 3 (e)
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Fig 3 (d)
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