Real-Time 3D Object Tracking

R. S. Stephens

Computing Devices Co. Ltd,
Kings Drive,
Eastbourne,

East Sussex, BN21 2UE

A system for tracking the three dimensional motion of
objects in real time is described.

The system uses a technique of localized image access that
enables it to achieve frame-rate operation without the need
for any special purpose hardware. All the processing for
one camera can be performed on a network of five
transputers, with a single transputer combining the
information from several cameras.

A dynamic Hough transform is used to solve a set of
constraints derived from image measurements. I shall
demonstrate how the robustness and intrinsic parallelism of
the Hough transform can be put to practical use.

The system has been tested on a stored sequence of one
hundred image pairs, which were captured under realistic,
noisy conditions, and the results are presented here.

The conventional wisdom in artificial intelligence, and
particularly in computer vision, is that large volumes of
input data should be converted into a more compact
symbolic form by a process of segmentation. The difficulty
of performing a satisfactory segmentation of image data
(except under the most artificial of conditions) has caused
the greatest problem in implementing useful vision systems.
Not only are segmentation algorithms computationally
expensive (which often prohibits real-time implementation),
the errors that they introduce into the symbolic description
of the image can be misleading to the higher level processes.
This is basically why the robustness of many vision systems
is so poor, and I was interested to see whether, by cutting
out the segmentation phase, a truly robust vision system
could be implemented.

The system described here uses a technique of direct access
to the raw image data for measurement of the lateral
displacements of edges from a predicted position. A similar
technique was used by Brisdon [1] for verification of model
instances in the Alvey Vehicle Exemplar. She found that it
gave a more reliable indication of the presence of the
vehicle than the data-driven approach based on
segmentation.

The task performed by my system is that of tracking the
three dimensional motion of a rigid body, so, if the system is
to work in real time, speed is a major consideration,
Previous work on unconstrained motion tracking (eg, [2,3])
involved segmenting the image, then matching features
between consecutive frames to determine the motion. By
avoiding the need for segmentation, I have have been able to
implement the system entircly in software running on a
small network of transputers. The system relies on the
sampling rate being fast enough, in relation to the motion, to

85

avoid problems in forming the right correspondence
between image features in consecutive frames.

One application of a cheap, robust, fast object tracker is for
the visual control of a robot. Currently the position of a
robot’s arm is deduced from joint position sensors, and is
susceptible to a build-up of errors due to the fact that the
arm is not perfectly rigid. Visual measurement of the
position of the end-effector would be unaffected by the
deflection of the arm, so the arm could be made of a lighter
(more flexible) material. This would be highly desirable for
the purposes of controlling the robot, and would allow much
faster and better controlled movements to be performed. To
control such a robot, however, a sampling rate well in
excess of the standard 50 Hz frame rate would be required,
and further development of the system will be necessary
before this is possible.

DESCRIPTION OF THE SYSTEM

The system is given a geometric model of the object to be
tracked, consisting of features that are likely to cause a
discontinuity of grey level in the image. Currently the
system only uses edges and surface markings as features,
but cylindrical and spherical surfaces giving rise to "horizon
lines" could also be modelled. Each feature consists of a
point on the edge - the position of the point and the direction
of the edge on which it lies are stored, using the object’s
coordinate frame. Each feature also has a coarse lookup
table to determine whether or not it is visible from a given
viewpoint. These features were input by hand in order to
test the system, but they could be generated automatically or
interactively with a CAD system.

For each new video frame the system is given an estimate of
the position of the object, either from previous frames, or
from knowledge of the initial position. Using knowledge of
the camera’s projection matrix, the system then predicts the
location and orientation of a number of edges in the image,
and processes the image in small regions to locate edges
with the expected orientation close to the predicted
positions. The lateral displacements of the edges from the
predicted positions are measured to sub-pixel accuracy by
smoothing the image data.

A sufficient number of these measurements enables the true
position of the object to be determined. If the estimated
position is close to the true position, the constraints imposed
by the edge displacement measurements can be linearized.
Although perspective effects do give a measure of range, the
equations will not be well conditioned if just one camera is
used. However, by combining measurements from two
widely spaced cameras, a well formed set of equations is
much more likely to be obtained.

AVC 1989 doi:10.5244/C.3.15

To Camera 1 [
i Frame-

store

L
Central
Workers Trans- —
puter
To Camera 2 |
Frame- | |

store

|

Figure 1. Minimum Transputer network for
frame-rate operation

Because of adverse lighting or obscuration, some of the
measurements will be incorrect. If no edge of the correct
orientation can be found near the expected position, then no
harm is done since the measurement is simply ignored.
However, where an edge is found that is not caused by the
feature in question, a spurious equation will be generated. If
the system is to be robust, these spurious measurements
must be excluded from the solution of the set of linear
equations, so a simple least squares approach cannot be
adopted. The method I have chosen to solve the equations
involves the use of a Hough transform, and will be
described later.

The system relies on the availability of a good estimate of
the initial position of the object (within, say, Smm), and no
provision is made for recovery of the object in the event that
it is lost. It is also assumes that the object moves in a
reasonably smooth or predictable manner.

For testing purposes the system was run on a single T800
transputer, but for real time implementation the network
shown in figure 1 would be used. This configuration would
be sufficient to track an object under conditions of low
noise, and where great accuracy is not required.

The network consists of two framestores, each of which
captures and processes images from one of the cameras in a
double-buffered mode. Each framestore is accessed by a
T800, and all the edge displacement measurements are
performed by these processors, so there is no need to
communicate image data between processors.

The worker processors carry out two tasks: the projection of
model edge points into the image, and the formation of the
Hough transform. The Hough transform is parallelized by
dividing the edge points up among the workers, so the major
communication overhead in the system is that of summing
the Hough spaces from all workers. The workers are
configured to minimize the communication overhead. The
worker processors consist of T800s, and the processes
running in them are simple enough to fit entirely in the 4K
of on-chip static RAM.

Finally, there is the central processor that combines the
Hough spaces from the different cameras and interprets it to
update the position of the object. Because the Hough

86

transform is performed in global coordinates, the
information from different cameras may be integrated
simply by summing the Hough spaces. This is an example
of the use of a Hough transform for the integration of
information from multiple sensors - a use that has not been
widely studied. Combining data from the two cameras at
this late stage in the processing is more robust than
combining them by stereo triangulation to determine the 3D
displacement of edge points.

We shall now consider the two most important parts of the
system, the measurement of edge displacements, and the
Hough transform, in more detail.

EDGE DISPLACEMENTS

Given the estimated position of the object, the camera
projection matrix, and the model of the object, the position
and orientation in image coordinates of some likely
grey-level discontinuities can be predicted. We are required
to measure the lateral displacement of the nearest significant
edge from the predicted edge.

Canny’s technique [4] of using elongated Gaussian
convolution kernels for detecting edges of a particular
orientation is employed, together with his non-maximal
suppression and sub-pixel location algorithms. Kernels of a
fixed size are stored for a sequence of orientations at 5
degree intervals. The nearest kernel to the predicted edge
orientation is selected, and is applied to the image

QO Points at
which the
convolution is
centred

Displacment
measured

along line of
convolutions

\

L True edge

Corrected
displacement

Projected
edgel

Figure 2. Measurement of Edge Displacements

sequentially along a line at the nearest 45 degree interval to
the normal to the edge (see figure 2). Floating point maths
is used for the convolution. As the kernel is moved
outwards in both directions, the two sequences are
differentiated. The process stops either when the gradient
magnitude (at a point of maximal gradient) exceeds a
threshold, or when the line has been extended more than a
certain number of steps. Quadratic interpolation is used to
locate the gradient maximum to sub-pixel accuracy. The
resulting measurement is then corrected for the sub-pixel
offset of the predicted position, and for the angle between
the 45 degree interval and the predicted edge orientation to
give the true edge displacement.

The processing described above might appear to be too

complex for a frame-rate implementation in software, but
remember that it is applied only to a few small regions of
the image. It is also worth pointing out that the T800
performs floating point maths very nearly as fast as it
performs integer maths (which is very fast). The measured
execution times on a 20 MHz T800 are shown in table 1.
Frame rate operation is just possible using 3x3 convolution
for about 20 edge points. Edge measurement could be
speeded up by distributing the image data over two or more

Edge displacement
in pixels
0 25 5.0
9x9 166 290 426
5x5 0.63 1.10 1.64
3x3 0.49 0.61 0.79
Smo‘;&mg 0.19 022 027

Table 1. Time in ms for measurement of an edge
displacement for various sizes of convolution kernel

processors, and splitting the edge points between processors,
but a more cost-effective way would be to smooth the image
in hardware before it is transferred into the framestore. This
would allow edge measurements to be performed without
smoothing, which, as table 1 shows, would be easily fast
enough.

Figure 3 shows a typical set of measurements. Note that
under normal circumstances, where the predicted position of
the object is fairly accurate, most of the edge displacements
are sub-pixel.

THE HOUGH TRANSFORM

The position of an object is described by six parameters:
three for translation and three for rotation. These
parameters span a six dimensional parameter space or
Hough space, each point in the space representing a
different position of the object in the real world. Because of
its high dimensionality, it is impossible to hold the whole of
this space as an array in a computer’s memory, but a small
region, centred on the estimated position, can be stored.

The use of a Hough transform to determine the six
parameters of an object’s position is described in [5], using
vertex pairs instead of edge displacements as input features.
The technique I am using has much in common with the
"Fast Hough Transform" described by Li, Lavin and Le
Master [6], although for use in image sequences I have
decoupled changes in position from changes in scale.

Consider a six dimensional array of accumulators, 3 cells
wide in each direction, all initialised to zero. For each edge
displacement measurement, those cells that represent a
position consistent with the observed measurement, are
incremented (see appendix A for derivation of the test for
consistency). The accumulator that has the greatest count,
when all measurements have been considered, represents the
most likely position of the object, and this is output as the
current position of the object.

Hough transforms in general are robust, so spurious inputs

87

¢ 04
0.1 04
05
05 03
05

Figure 3. A typical set of edge displacement measurements
from left and right cameras

do not affect the output in the same way that they would
affect a least-squares solution. This is because it is the
consistency of the data that causes a particular accumulator
to have a large count, while inconsistent data will increment
other cells in a purely random manner. This ability to sort
the good edge displacements from the bad is essential to the
robustness of the whole system.

Note that the output position is in effect quantized by the
separation of the accumulator cells, so the use of the
smallest possible cell size is desirable. If the cell were too
small, however, the true position of the object might lie far
outside the region of Hough space represented, and the
accumulators would lose their significance. One way of
increasing the accuracy of the system (at the expense of
speed) is to perform multiple iterations of the Hough
transform for each frame, with the cell size halved at each
step. Although one can add more worker processors to the
system, the extent to which one can do this will be limited
by the communication overhead of combining.the Hough
spaces.

A process of coarse-to-fine control is used to adjust the scale
of the Hough space according to the conditions. If the
output position is close to the original estimate, the size of
Hough space cells can be decreased, but if the estimate
turnes out to be a poor one the cell size should be increased.

The arrangement of cells described above contains 729 (3 to
the power of 6) cells. Although this would not be an
impossibly large number of units to handle, an alternative
arrangement, consisting of a set of 43 close-packed spheres,
as shown in figure 4, was found to perform just as well. The
close-packed arrangement is appropriate because the
method of forming the Hough transform approximates the
cells as spheres, and it is desirable to minimize the amount
of overlap. Appendix B gives a method for generating a set
of close-packed spheres in any number of dimensions (it is
left as an exercise for the reader to prove that the method is
valid).

Cubic
729 cells

Close-packed
43 cells

Figure 4. Arrangement of Hough space cells,
simplified to 2 dimensions

Mapping 82 s
Pre-computation 1.46 ms
Accumulation 0.24 ms

Table 2. Computation times per edge point for worker
transputers

Table 2 shows times for computation of the Hough
transform on a T800. The edge points are mapped into the
image and are sent to the framestore processor. While the
framestore is measuring the edge displacements, the worker
processors pre-compute the allowable range of the
displacement for each cell. Then, when the actual
displacements are sent back from the framestore, the Hough
space is accumulated. This use of parallelism means that
neither the framestore nor the workers are idle for very long.
The time taken to sum the Hough space across the network
has been measured as 0.19 ms per layer of workers (the
network in figure 1 has two layers of workers).

EXPERIMENTAL RESULTS

The system was tested using a sequence of 100 image pairs,
which were stored on disk. Processing was performed on a

single T800 transputer, using software written in OCCAM,
making liberal use of communicating parallel modules. The
sequence shows a robot moving a "widget" through a
programmed set of points, pausing at each one while the
images were captured and stored on disk. Use of the robot
allowed the true position of the object at every frame to be
known, so the accuracy of the system can be gauged
objectively.

Figures 5 to 8 show a selection of images from the
sequence, overlayed with the system output. To give an idea
of the scale, the U-shaped object in the robot gripper is
70mm in length. The images are 256 by 256 pixels, but the
object is only 50 pixels or so wide, so the data can be
considered to be low resolution. A substantial part of the
object is always obscured by the robot gripper, and the
chequered cube (which was used for camera calibration)
forms a confusing background, with many strong edges
close to the object. This set of data was designed to test the
robustness of the system to the limit, and there are parts of
the sequence were the system does break down.

The output of the system over frames 10 to 80 is shown in
figure 9, showing successful tracking up to frame 75, after
which the object is lost. At several stages errors exceeding
10mm are generated, but the system is able to correct itself.
A contribution to the final failure can be seen in figure 8 -
edge points obscured by the robot gripper have become
associated with the vertical edge of the gripper, and as the

Figure 5. Left camera, frame 30

Figure 7. Left camera, frame 70

Figure 6. Right camera, frame 30

Figure 8. Right camera, frame 70

Error! °
20
10
0
10 20 30 40 50 60 70 80
Frame number
Error | mm
20
) A(\/J\[\
0
10 20 30 40 50 60 70 80
Frame number

Figure 9. Plots of total output error in position and
orientation against time.

object rotates clockwise, the estimated position is carried
further away from the true position of the object. These
results were obtained using 9x9 convolution, and three
iterations of the Hough transform per frame. The RMS
errors in position and orientation between frames 10 and 70
are 6.5mm and 3.4 degrees.

Whilst the accuracy of tracking is not all that it might have
been, these results do demonstrate the robustness of the
system in dealing with noise, occlusion and confusing
backgrounds.

The implementation and performance of the system is
described in more detail in [7].

CONCLUSIONS

I have described a system that performs unconstrained
object tracking in real time. The computation is simple
enough for it to be performed at frame rate using a small
network of transputers. I attribute the speed, accuracy and
robustness of the system to the technique of direct access to
the image, making image segmentation unnecessary.

Much of the robustness of the system is due to the use of a
Hough transform for solving constraints on the object’s
position. Hough transforms are also intrinsically parallel,
and they provide an ideal way of combining information
from two or more cameras. In dynamic Hough transforms,
where accumulator cells are spherical, the use of a
close-packed arrangement of cells has been proposed.

The transputer has been invaluable in the development of
this project. It is the very high floating point performance
of the transputer and its ability to form tightly coupled
parallel systems that made it possible to consider a software
implementation of the system,

89

ACKNOWLEDGEMENTS

My thanks are due to Prof. Frank Fallside (my PhD
supervisor at Cambridge University), to Mark Wright and
Eddie Murphy for their help in capturing the test sequence,
and to Pablo Iglesias and Chris Blair.

REFERENCES

1. Brisden, K. "Alvey MMI-007 Vehicle Exemplar:
Evaluation and Verification of Model Instances" Proc. AVC
1987

2. Sharial, H. and Price, K. E. "Results of Motion
Estimation With More than Two Frames" Proc. DARPA
Image Understanding Workshop 1987

3. Liu, Y. and Huang, T. S. "Estimation of Rigid Body
Motion using Straight Line Correspondences” IEEE
Workshop on Motion: Representation and Analysis 1986

4. Canny, J. F. "A Computational Approach to Edge
Detection" PAMI 8(6) pp 679-698 1986

5. Thompson, D. W, and Mundy, J. L. "Three
Dimensional Model Matching from an Unconstrained
Viewpoint" Proc. IEEE Conf. on Robotics and Awtomation
1987

6. Li, H, Lavin, M. A, and Le Master, R. J. "The Fast
Hough Transform: A Hierarchical Approach” Computer
Vision, Graphics and Image Processing 36 1986

7. Stephens, R. S. "Implementation of a Real-Time 3D
Object Tracker" Proc. International conf. on Transputers
for Industrial Applications Il Oct 1989

8. Ahuja, D. V. and Coons, S. A. "Geometry for
Construction and Display" IBM Systems Journal 7(3-4) pp
188-205 1968

APPENDIX A: The Hough Transform

Homogenous Transforms [8] are used for mapping be-
tween coordinate systems.

The Mapping from world coordinates into image coordi-
nates is given by the 3 by 4 camera matrix C, and the
estimated position is M. T' = CM maps object coordi-
nates into the image.

z is the 3D position of an edge point in object coordi-
nates, and it is projected into the point u in the image,
and n is a unit normal to the projection of the edge.

The transformation between estimated and true object
position is given by the matrix P

1 -ps pPs m
p=| Ps 1 —ps po
—P5s DPa 1 p3

0 0 0 1

where p; to ps are small parameters of the motion of the
object.

P = [p1, P2, P3, P4, Ps, pe) " -

The edge displacement, d, is a function, f, of p.

f(0) = 0, since the edge displacement is theoretically
zero if the estimated position coincides with the true
position. Hence the Taylor’s expansion of f(p) is:

df
d oo |t 'D =].
I et gp ()

Let v(p) be the projection of the edge point from the
true position, and let y(p) be the 3D position of the edge
point referred to the coordinate frame of the estimated
position.

f(p) =n-(v(p) —u)
=n-v(p)—n-u
4 _,)

= = a5 (2)
Now,
s
Ty = |svq where v = [!]
s

v =
tay tay

where
1 0 0 0 r3 —I
F d__l{ |01 0 —=2z3 O x
- dp T10 01 =zy -z 0
0 0 0 0 0 0
dv 1
d—l = —[t1 — uit3]
P p=0 s
similarly
dv 1
d—2 = —[ty — usts]F
P p=0 8

Hence, from (2), ¢ may be found.
A Hough space cell has centre h and radius r. From (1),
the cell is incremented iff
lgh — d| < rg]
= gh—|glr <d < gh+|g]r.

This is the test that is performed for each edge displace-
ment, for each Hough space cell. Note that gh and |g|r

can be computed before d has been measured, introduc-
ing parallelism between the workers and the framestore.

APPENDIX B: Close-packed Spheres.

A set of spheres close-packed in N-dimensional space can
be generated as follows.

Definition:

A set of spheres close-packed about a central sphere sat-
isfies the following conditions:
e all spheres touch the central sphere
e no two spheres intersect
e the set contains the maximum possible number of
spheres.

The elements of a vector z are denoted z[0], z[1],...
1. Generate the vectors Py to Py as follows:
Po=0
:%T Z;:D Pk[j]
Piali] = \/1 = Lo Phalk] if j=i
- 0 if j>1
2. Then generate the sets of vectors Sy to Sy as follows:
Si= {:c rx= :I:(P.‘ — Pj),Vj < 3'}

3. The members of Sy to Sy are the centre coordinates
of a set of close—packed spheres of unit radius.
Example: N =4

P0=1[0,0,0,0, P1=[1,0,0,0]

P2 = [1/2,v3/2,0,0]

P3 = [1/2,1/(2V3),V2/V/3,0]

P4 =[1/2,1/(2V3),1/(2V2V3), V5/(2V2)]

Sp = {[0,0,0,0]}
8§ = {i {LO’O:U]]’

8, = {%[1/2,v3/2,0,0],
+ [-1/2, ~/§/2,0,0]}

83 = { [1/2,1/(2v3),v2/V3,0] ,
+ [-1/2,1/(2v3),V2/V3,],
+ [0,-1/V3, \/E/\/:?'o]}

Sa={% [1/2,1/(2v3),1/(2v2V3), V5/(2v3)|
+ [-1/2,1/(2v3),1/(2v2V5), V5/(2V3)|
4 [0,—1/~/§, 1/(2\/'2'~/§),v/§/(2v/§)] ,
+ [0,0,—~/§/(2\/§),(\/§/2\/'2’)]}

NB, this is only one of many possible solutions.

if j<i

