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A method and results are presented for a system that
finds and tracks known polyhedral objects in 3-space,
given a sequence of grey-level images. The object is
located in the first frame using model-based search.
Image features are then tracked into the next frame us-
ing optic flow techniques, and their disparities are used
to invert the perspective transform. The system
can recognise when it is getting lost during the tracking
stage. It recaptures its position through another model
search that uses the reduced disparity information, and a
'best guess' at position, to constrain the size of the search
space. To do this the system integrates 3 established al-
gorithms in a novel way: model matching is done using
modified Goad-search [1, 2]; edgelets are tracked between
images using a flow algorithm such as Barnard & Thom-
son's [3]; and the perspective transform is inverted using
Lowe's formulation of the projection equations [J,, 5].

A model-based system that uses 2D features encoun-
ters a very large search space in the matching process,
since such features are viewpoint dependent] however,
such 2D features are generally much simpler to compute
than the alternative - 3D features. This work demon-
strates that when tracking an object through successive
images it is possible to avoid both a combinatorial ex-
plosion of the search space, and the problems of complex
feature construction, by exploiting knowledge obtained
from previous frames.

There are two possibilities for exploiting the known
position of an object in a frame: it can allow the use
of image-based techniques in tracking the object into
the next frame, or else it can constrain a model-based
search for the object in the next frame. The former is
fast but can fail; the latter allows recovery from such
failure. This system uses both methods; it is therefore
integrating model-based search with image-based track-
ing to exploit the benefits of both.

SYSTEM OVERVIEW

The system finds the object in the first frame. It then
tracks the object through successive frames until it starts
to fail, at which point it uses the partial information
available from the tracking process to recover lost posi-
tion and continue as before. The system divides natu-
rally into 3 stages of processing:

1. The First Frame position is found using a model-
based search method - a modification of Goad's

algorithm [1, 2] - followed by Lowe's convergence
[4, 5]. The Goad-search performs a match between
model features and image features to locate the ob-
ject in a particular frame . It calculates two things:
a set of correspondences, or an interpretation, be-
tween image and model features for a particular
frame and a locus of viewing positions for which
this set is consistent 1 . Lowe's convergence method
takes this derived correspondence set, and a rough
estimation of the location of the object computed
from the viewing locus, and performs two functions.
It verifies that the correspondence set is globally
consistent, and it provides a more accurate estima-
tion of object position by making maximal use of
the information in the correspondence set.

2. The Tracking Stage takes as input a precise posi-
tion for the object in the first frame (such as is found
in Stage 1). By projecting the model at this position
it can predict features in the image and track them
into the next frame using image-based techniques.
By doing this it is able to deduce the correspondence
set for the next frame without resorting to the ex-
pense of a model search and segmentation. Given
the correspondence set it performs a convergence
from its position in the first frame to its position
in the next (as above). This process repeats itself,
tracking the object through successive images, until
it decides that it is unable to locate the object in
the next frame reliably. It then passes control to
Stage 3.

3. The Recovery Stage takes over if tracking gets
lost. It takes a reduced subset of the correspondence
set and a very rough estimation of object position
(such as is available when tracking fails). It con-
ducts a Goad-search as outlined in Stage 1. However
the search is centred on those viewpoints that cor-
respond to the position estimate, and is constrained
by the degraded correspondence set. As with Stage
1, it yields a reduced locus of viewpoints and a fuller
correspondence set, which are then used for con-
vergence to give the most accurate object position
possible.

The flow of control between these stages is therefore
very simple. Stage 1 finds the object in the first frame
of a sequence. Stage 2 then tracks the object through
subsequent frames for as long as it is able, using image-
based methods to avoid search. Stage 3 is entered only

1A view position corresponds to a point on the viewsphere and
constrains object orientation to within one degree of freedom
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if previous tracking breaks down; it re-establishes lost
position via a constrained model-search and then passes
control back to Stage 2 to resume tracking.

ALGORITHM
In the system implemented each of the above stages uses
adaptions of established algorithms.

First Frame

The object is detected in the first frame using a model
search that is a development of Goad's algorithm. The
model for the object class is defined as a set of 3D line
segments. The image is processed for 2D line segments.
The viewsphere is quantised into a set of viewpatches,
and the interpretation tree of potential matches between
image and model lines is then searched over the set of
viewpatches. The tree is pruned using local constraints
that have been pre-compiled ofT-line. As a branch of the
tree is expanded the possible position of the object is
restricted. Corresponding to each node in the tree there
is a locus of viewpatches over which the above branch
is consistent. At a leaf-node this locus defines a rough
estimation of the orientation of the object for the first
frame. A branch of the tree that reaches a leaf-node also
defines a possible correspondence set (or interpretation)
between model and image features, where each node in
the branch constitutes a member of the set.

The local constraints used for pruning the tree corre-
spond to the Angle Constraint and the Direction Con-
straint described by Grimson [6] and illustrated in Figure
1. These constraints can cope with the object being at
any scale in the image (or any distance from the camera).
They are also insensitive to errors resulting from image
segments being of reduced size due to occlusion, poor
lighting or poor segmentation. This scale independence
and segmentation independence is due to the fact that
both pruning constraints used are angular. The Angle
Constraint puts bounds on the permissible angle between
two image segments, and the Direction Constraint puts
bounds on the direction of a vector connecting two im-
age segments. Measures of distance between segments
are totally ignored. The algorithm still relies upon a
relatively good segmentation of the image however, in
that failure to detect lines that should be visible leads
to unacceptable expansion of the search space.

Given the partial orientation, constrained to within
one degree of freedom, it is simple to determine rough
estimates for the final orientation and the three trans-
lation parameters. The partial orientation allows a 2D
template to be generated from the model. This template
can be rotated, translated and scaled in 2D to match
against the image, matching being guided by the corre-
spondence set. The 2D rotation can be composed with
the partial orientation to remove the last degree of free-
dom; the 2D translation determines 2 of the 3D trans-
lation parameters, and the third (the depth parameter)
can be estimated from the 2D scaling factor.

Given the correspondence set and these estimates for
object position the model converges to a more exact posi-
tion by inverting the perspective transform. The method
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Figure 1: The Pruning Constraints. In the ideal case
the Angle Constraint states that am = at and the Direc-
tion Constraint states that /?m, < ft, and ft*. > ft.

used is that of Lowe. The model is projected into the im-
age at the estimated position to give a set of image lines.
Each of these is compared to the actual image segment to
which it corresponds (deduced from the correspondence
set) to give a set of disparities. Each match yields two
disparities - the distance of the ends of the projected
model lines from the infinite line defined by the image
segment. These disparities are used as the error terms
when inverting the transform: an adjustment is calcu-
lated for the object rotation and translation which, when
composed with the initial position estimate, provides a
new estimate of object position such that the disparities
are reduced. This is an iterative process that halts when
the adjustments are zero, and the model has converged
to a final position. Lowe's formulation of the projection
equations results in fast convergence. The choice of error
term means that the algorithm is ignoring information
concerning the length of the image segments found, and
is only using the transverse position. This leads to an
accurate solution given sufficient non-parallel image seg-
ments.

Tracking

To find the object again in the next frame it is not nec-
essary to repeat the expensive Goad-search since 2D line
segments can be tracked directly, thereby maintaining
the correspondence with model lines. To take advan-
tage of surface texture and other contextual informa-
tion, line segments are tracked via a flow field computed
between the consecutive frames using Barnard k Thom-
son's algorithm applied to edgelets [3]. Alternative al-
gorithms have been experimented with for computing
the flow field: standard grey-level correlation techniques
were used to compute the flow for the result sequence
shown in Figure 5 2 . Once the correspondence set has

'Since only the transverse component of flow is required for
feature-tracking, simple techniques provide satisfactory results.
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Figure 2: Mapping To Infinite Image Lines.
Edgelets found close to the projection of a model seg-
ment are tracked into the next frame. They are used to
compute the infinite image line

been computed in this way, the model can converge from
its original position to a new position in the next frame,
as described above.

When tracking features using flow, model segments are
mapped onto infinite lines and images need be segmented
no higher than edgelets. Firstly, 2D disparities are calcu-
lated for all edgeiets moving from one frame to the next
using the chosen flow algorithm. All model segments are
projected in the first frame at the known position , and
a strip of variant width centred around the 2D segment
is overlaid on the edge-image for this frame. All edgelets
falling within the strip are considered constituent of the
model segment; their new positions in the second frame
are accessed from the flow field, and the line of least
squares error passing through them is computed. If the
corresponding correlation co-efficient is sufficiently high
then that model line will be taken as both visible and
successfully mapped. This simple tracking technique is
illustrated in Figure 2.

As already stated, tracking the projection of model
lines means that it is not necessary to perform a full seg-
mentation of the image: edgelets need not be grouped
into line segments. The technique provides a mapping
between model lines and infinite image lines for a given
frame; this is precisely what is required for convergence.
Since the mapping is to infinite lines, the aperture prob-
lem that commonly confuses edgelet tracking algorithms
is neatly side-stepped - it is only important that edgelets
are mapped onto the correct line, the position along the
line is irrelevant. The method of thresholding on cor-
relation coefficient makes the algorithm robust to both
general and self-occlusion in that occluded segments can
be easily filtered out; the algorithm can also cope with
self-occlusion by predicting which model features should
be visible at the projected position.

This process of tracking features followed by conver-

More sophisticated algorithms [7, 8, 9] have not been tested

gence is repeated for subsequent pairs of images until it
fails.

Recovery

When tracking starts to err, which can be determined
either by examination of parameters in the convergence
stage or by the number of image features being success-
fully tracked, a constrained Goad-search is applied. The
system backtracks to the last frame in which object posi-
tion is known with certainty (usually the last frame pro-
cessed) and the next frame is then segmented. A subset
of the correspondence set is computed for the segmented
frame using the most successful feature mappings from
the feature tracking stage: the image segment in the
segmented frame that maps best onto the infinite line
defined by the feature mapping is considered to corre-
spond to the model line defined by the feature mapping.
This subset is then used, along with the last position
estimate, to seed a Goad-search. The partial correspon-
dence set defines a sub-branch of the search tree, and the
search can operate on a reduced viewpatch locus that is
centred on the patch corresponding to the position es-
timate, and of a size determined by possible interframe
motion. The sub-branch is checked for consistency - if
it fails a new branch is sought - and the locus it defines
further reduces the search locus. The model search then
continues from the bottom node of the branch.

Since the search tree branches highly at the top and
substantially less at the bottom the size of the search
space is greatly constrained. If the recovery stage is en-
tered as soon as tracking begins to fail the search will
be very fast, and the worst case of unconstrained search
can be avoided. The result is a fast computation of the
full correspondence set, and a more accurate estimation
of object position. These are used, as before, as input to
the convergence routine which provides a final estimation
of object location. In fact it is the complete correspon-
dence set that is most significant, since the last known
object position is usually accurate enough to be used in
the convergence routine.

RESULTS

The following results demonstrate the system tracking a
3-point plug through 2 sequences of images.

• Figure 3 shows a wire-frame drawing of the model
for a 3-point plug, the edges extracted from the first
frame of Sequence 1 using the Canny operator [10]
(thresholded on edge-strength), the segmentation of
the first frame, and the edgelet flow chart between
the first and second frames (produced using Barnard
& Thomsons algorithm).

• Figure 4 shows the model overlaid in Sequence 1 - a
sequence of 5 frames [Resolution 256x256]. The first
image shows the model position in the first frame
after the Goad-search but before convergence. The
next five show the model's final position after con-
vergence for all five frames of the sequence.
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Figure 3: Model, Edges, Lines & Flow

Figure 4: Sequence 1
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• Figure 5 shows the model overlaid in Sequence 2
- a sequence of 16 frames [Resolution 128x171] of
the plug swinging on a string. The images contain
poor quality edge information and the first image
had to be hand-segmented for the Goad algorithm
to work satisfactorily. The model is overlaid at its
final position throughout the 16 frames. The flow
was computed for this sequence using a correlation
algorithm similar to the 5am of Squared Differences
method [11].

The first sequence demonstrates the system work-
ing without help; the second shows that, given hand-
segmentation, the tracking process operates effectively
on low resolution data. Neither sequence demonstrates
the recovery stage.

SUMMARY
• A system has been designed and implemented that

integrates image and model based techniques
in tracking polyhedral objects in 3-space. It is po-
tentially both fast and robust. The image-based
processing gives it speed while the model-based pro-
cessing allows it to find the object in the first frame,
and to recover if it starts getting lost. In both types
of processing, information concerning the current
object position is used - either to constrain search
or to track features.

• The system avoids many segmentation prob-
lems. For the most part segmentation of the im-
age into line segments is unnecessary. When it is
necessary, only angular relationships between seg-
ments are exploited in model matching, and only
the transverse position of segments is exploited in
convergence.

• The system manages to side-step the aperture
problem when calculating flow. When tracking
features the projected model segments are being
mapped onto infinite image lines in the next frame
and hence only the transverse component of the flow
vector is neeeded to compute this mapping.

• The system has the ability to cope with a degree
of general occlusion: the constraints used in the
Goad-search are insensitive to segment length; only
features that are visible will be successfully tracked;
and the convergence routine uses error terms that
are also insensitive to segment length. The system
(esp. the Goad-search) cannot cope with many ex-
pected features being totally absent from the image.

• Results have demonstrated that the system is ca-
pable of tracking polyhedral objects in poor quality
low-resolution image sequences. The model-based
module requires better quality images, since errors
in detecting line-features result in an unacceptable
expansion of the search space.

• Further work would be worthwhile in the following
areas:

Incorporating information concerning object
motion into the predictive modules

Adapting the model-based algorithm to work
on a variety of image features other than line
segments. This would allow the system to work
in a variety of image domains and with a more
flexible modelling system (eg. for curved ob-
jects).

Finding alternative solutions to the correspon-
dence problem on these different types of fea-
tures
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