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Deformable models of elastic structures have been
proposed for use in image analysis. Previous work has
used a variational approach, based on the Euler-
Lagrange theory. In this paper an alternative
mathematical treatment is introduced, based on a direct
minimisation of the underlying energy integral using the
Finite Element Method. The method is outlined and
demonstrated, and its principal advantages for model-
based image interpretation are explained.

INTRODUCTION
Models allow the use of high-level knowledge about
expected structures to control the visual interpretation
process. Most work on model-based vision has
considered rigid [1] or parameterised [2] models.
Recently, deformable models have also attracted
attention, e.g. [3,4,5]. Deformable models are likely to
have particular relevance in medical imaging
applications, as a means of encoding the shapes of
anatomical organs, which are inherently variable.

As an example, consider an X-ray image of an artery.
Context-free image processing may produce good
evidence of an artery in the regions A and B (see Figure.
4(a)), but fail to identify its position between A and B.
One way to detect the artery in this space is to use a
model of an "ideal" artery, which can be deformed
within known constraints under the influence of the
fragmentary image data, to derive an optimal global
solution.

A simple artery model can be specified by minimising
the energy integral given in expression (1) over
functions v(s), as proposed by Kass et. al. [3].

I {a(s)lv (s)l2 + P(s)lv (s)l2 + I(v(s))}ds (1)
J 0

 s ss

Where v(s) = (x(s), y(s)) is the position vector as a
function of the intrinsic parameter s, the normalized
length of the line with vertices vi» V2 • • VM [note: vi
(i= 1 . . M) denotes v(s-)]. The terms vo and voo denote
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first and second derivatives of v with respect to s; and

ot(s), P(s) are weighting functions.
Expression (1) contains three terms, the minimisation of
which have simple physical interpretations.

The term lv_(s)P (the norm of the first derivative of
the position vector) makes the model act like an
elastic string.

• The term (the norm of the second

derivative of the positional vector) makes the model
act like a thin bar.

• The final term, I(v(s)), is used to allow chosen
features of the image intensity values to influence
the model. In the present treatment we use the
image grey-values along v(s), so that the term is
minimised in dark areas of the image.

In effect, the minimisation of expression (1) expresses
the fact that an artery is a stiff, elastic, dark entity. The
optimal global solution of the position of an artery is
the choice of v(s) which minimises the total energy
given in (1). In general this is a non-linear problem
which must be solved using iterative numerical methods,
which produce successive deformations of the position
v(s).

A method for minimising integral (1) based on the use
of the Euler-Lagrange Theory (ELT) has been presented
previously [3,4,5]. This paper presents an alternative
approach based on the use of the Finite Element Method
(FEM). In recent years, FEM has been used extensively
in computational studies of elasticity in structural
mechanics. It offers benefits over the more traditional
ELT, which it has now superceded in many areas of
study. We report here a modification to the FEM which
allows it to be used for model-based vision, and discuss
its computational advantages over ELT.

ENERGY MINIMISATION BY ELT & FEM
Both ELT and FEM may be used to solve variational
problems, including the minimisation of energy integrals
such as expression (1). The principles of both methods
have been treated extensively in the literature [6,7]. The
two approaches are illustrated in Figure 1, and their
main characteristics are outlined briefly below.

(i) Euler-Lagrange Theory
The ELT solves a variationai problem by reducing it to
the solution of differential equations. The ELT method
used by [3,4,5] develops a set of differential equations by
considering the change in the energy integral caused by
small variations in each of the unknowns x(s), y(s).
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Figure 1: Schematic showing alternative approaches to energy minimisation, using FEM (left) or ELT (right).
FEM is more direct since it involves a single stage of approximation, whereas ELM requires two

This gives rise to the Euler-Lagrange equations. These
higher-order differential equations are then made discrete
and solved numerically by means of finite differences.

(ii) Finite Element Method
FEM uses the energy integral directly, and works by
dividing the given domain into subdomains and
minimising the energy integral over each subdomain
separately. This produces the so called "element
equations" which are then joined together through their
common boundaries.

External forces which are independent of the unknowns
to be determined may be represented in FEM as a set of
loading conditions. FEM also leads to a system of
equations, the solution of which involves a matrix. In
this case the matrix is not only banded, but is also
symmetric and positive-definite.

The advantages of FEM over ELT

A main advantage of the FEM in minimising energy
integrals such as expression (1) is that the method is
more straightforward. It acts directly on the integral,
instead of transforming the integral to a set of
differential equations to be solved numerically (see
Figure 1).

Further, there are difficulties inherent in the ELT
approach, especially when several independent variables
are involved (requiring partial derivatives). This
constrains both the type of integral that can be
minimised by ELT, and the choice of boundary conditions
[8]. FEM provides a very flexible approach to
minimising energy integrals, and is capable of handling a
wide variety of energy integrals and boundary conditions.

ELT is also ineffective in solving problems that are
geometrically complex, or whose loads or physical
properties are discontinuous [9]. FEM is well-suited to
this task [10].

There are a number of other advantages of FEM over the
use of ELT solved by finite differences, which are of

particular relevance to applications involving deformable
models:

• FEM leads to matrices which are n-diagonal,
symmetric, and positive-definite, for which efficient
numerical schemes have been developed that use
fewer operations and handle round-off errors
effectively. An example of such a numerical scheme
is the Cholesky decomposition [11].
The ELT leads to n-diagonal matrices with no
guarantee of symmetry or positive-definite
characteristics.

• The ability to represent domains with irregular
geometries by a collection of Finite Elements makes
the method a valuable practical tool for modeling
regular structures. This feature has proved
important for the solution of problems in structural
engineering. Domains with curved boundaries can be
treated very effectively by using "isoparametric"
elements [12], and this is particularly useful for
modeling curved surfaces by means of an elastic
membrane.
By contrast, in ELT the nodes over which the
derivatives are made discrete must form a
rectangular mesh, which often fails to capture the
underlying geometry efficiently In multiple
dimensions this can lead to great inefficiency.
Figure 2 illustrates this point graphically. FEM is
able to use an efficient representation of the
structure, as 2 triangles and 2 quadrilaterals, which
may be specified by 8 pairs of equations in 8 pairs of
unknowns (corresponding to the asterisks in Figure
2(b)). On the other hand, the ELT approach (using
finite differences) requires nodes spaced equally in
each dimension, Figure 2(c). Very high resolution is
needed to capture the shape of the structure
accurately. In this case 60 2-d control points are
needed, giving rise to 120 unknowns.

• FEM uses a more natural description of the
derivatives, able to exploit the continuity of the
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Figure 2: Illustration of the advantage of using
finite elements to model geometrical structures

position vector over each element.
ELT equations solved by finite differences use a
discrete approximation for the derivatives.

• In the FEM we can choose between a wide selection
of boundary conditions. It is also possible to
impose smoothness criteria at the inter-element
boundaries, with only small modifications of the
final system.
ELT does not have the equivalent flexibility [6,8].

DEMONSTRATION OF FEM
The use of FEM for image interpretation using
deformable models has been demonstrated by means of a
program which uses the same energy integral as Kass et
al [3]. Details of the method are given in the Appendix.
We can think of the function v(s) as a "snake" which
seeks out dark regions in the image.

The image term in the energy integral (1) gives rise to a
set of external forces. These are calculated by
estimating numerically the derivative (with respect to
the unknowns, x and y) of the integral of the image
intensity along straight lines connecting adjacent nodes.
The external forces act as the loading conditions for the
system (see Appendix). As the snake moves between
iterations, the image energy changes according to its
position. This changes the loading conditions, which
have to be re-computed on each iteran'oa

Our initial implementation is computationally
inefficient. It has been written in popll, and uses a
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Figure 3: Demonstration of the FEM minimisation of
expression (1), showing (top to bottom) the initial
position, and the result after 1,3 and 9 iterations.

general-purpose matrix-inversion routine (based on the
pivotal Gauss method), which has poor numerical
characteristics for this problem, and fails to exploit the
properties of the symmetrical, positive-definite, banded
matrix. Furthermore, we have as yet employed only a
very simple iterative technique. In consequence, our
demonstrations are at present limited to use only a few
tens of nodes, and the behaviour of the snake is
correspondingly coarse. In future work we plan to make
use of more efficient numerical methods.

Figure 3 shows an example of the program applied to a
synthetic image. Figure 3(top) shows the initial
position of the snake. The black crosses indicate fixed
points, and simulate the fragmentary evidence that might
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Figure 4: FE Mesh generation showing (x,y) positions (top) parameterised by s (bottom)

be derived either from low-level image processing, or
from the interactive specification of known points by the
user. The white crosses represent additional starting
points interpolated between the fixed points.

Figures 3 show the results after 1, 3 and 9 iterations of
the program. It can be seen that the snake successfully
seeks out the linear shape in the image.

Several difficulties remain, which have not yet been
investigated. Firstly, the snake manifests erratic
behaviour at the inter-element boundaries, due to the
lack of smoothness constraints between elements. In the
example shown in Figure 3, the only influence between
elements occurs where they join. One method for
overcoming this has been to use over-lapping elements.
This doubles the number of elements which are then
combined linearly into the M*M matrix. A better
alternative would be to impose first and second order
continuity at the inter-element nodes.

CONCLUSION
We have presented a novel technique for using
deformable models in the analysis of images, based on
the finite element method. The technique has been
demonstrated on a simple simulated image.

The FEM offers several important potential advantages
for minimising energy expressions arising from
deformable models, but these have yet to be properly
investigated. In particular it offers the ability to use
more complex energy terms, and may be efficiently
extended to problems involving multiple dimensions.
These developments are the subject of current work.

APPENDIX

OUTLINE OF THE IMPLEMENTATION
We give here a brief description of the use of FEM for a
one dimensional case. The problem is to minimise the
energy integral given in expression (1). We have adapted
fairly standard techniques, see [9,12]. Section 1 below
summarises conventional finite element methods, and
Section 2 reports our adaptation of the method for image
analysis using deformable models.

(1) One Dimensional FEM
Division of the domain into finite elements. The domain
(s) is divided into a finite number of elements (m). Each
element includes a number of nodes (n), determined by
the degree of continuity of the vector v(s)=(x(s),y(s))
demanded by the order of the derivatives in the energy
integral. Neighbouring elements share a common node,
see Figure 4(b), so that the total number of nodes is
given by M = 1 + m(n-l).

For the expression (1), n must be at least 3 because it
includes second order derivatives of the position vector.
In this case the analytical representation of the position
vector v(s) must be at least quadratic over each element.

Calculation of the basis functions. The coordinates of
the positional vector, x(s) and y(s), over each element
can be expressed by:

x(s) = £ x. O^s) (j = 1.. n)

y(s) = £ y. *.(s) (j = 1 .. n)
(2)
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(s) =
(s - s2)(s - s3) ( s - - s3)

(s2 - s,)(s2 - s3)

4>3(s)

(s3 - s,)(s3 - s2)

Figure 5 Basis functions (Lagrange interpolating polynomials)

where O- (s) (j = 1, . . n) are the Lagrange interpolating

polynomials (see Figure 5), and x- , y. are the

coordinates of the position vector v(s) at the nodes
within the element.

A graphical representation of the basis functions is given
in Figure 5. Note that several of the desirable
computational properties of the final matrix are due to
the use of the Lagrangian basis functions.

Calculation of the "element" equations. For each
element we substitute the right hand side of equations
(2) into expression (1) where the integration is taken
over the corresponding element and we differentiate
with respect to the unknowns, Xj, yj, within each

element. This leads to a system of n equations in n
unknowns, the so-called element equations.

Derivation of the final system. The m sets of n element
equations are then assembled to form the final system of
M equations in M unknowns, by summing the
coefficients at the inter-element boundaries. The
resulting M*M matrix (the "stiffness" matrix) has
symmetric, positive-definite characteristics, and a variety
of numerical schemes exist that offer an efficient
computational solution.

(2) Modification for model-based vision
The conventional FEM has been adapted to the specific
needs of image processing in the following way.

The initial positions of the nodes (see Figure 3(top)) are
determined interactively by hand, and are identified as
fixed or movable points. The nodes are grouped into
elements consisting of three nodes, so that neighbouring
elements share their boundary nodes (see Figure 4(b)).
The positions of the nodes determines the forces exerted
on them by the internal tension of the model. These
internal forces are combined into a global stiffness
matrix, A.

The stiffness matrix A, representing the internal forces
of the snake, is combined with the external forces,
which cause the snake to be attracted towards areas of

low intensity in the image. This leads to equation (3).

A * v = b (3)

Where b represents the force vector due to the image
energy term. The force vector is derived numerically
from the image data by measuring the change, under
small perturbations of the position v(s), in the integral
of I(v(s)) along lines between adjacent nodes within an
element.

Equation (3) is then modified to take account of the
boundary conditions due to fixed nodes by the method
given in [12, page 173].

The external force vector b depend strongly on the
position of the model in the image, so equation (3) is
non-linear, and a simple iterative scheme is employed to
solve it. At each iteration, an improved position for
v(s) is computed by the linear solution of (3). This
provides an improved estimate for b, and the process is
repeated. At each step, a node is constrained to move no
further than a fixed limit, which is progressively
reduced with each iteration. This has the effect of
damping down any oscillatory behaviour.
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