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The aim of this paper is to propose a new way of describing
three dimensional shape. The shapes to be described are non
rigid shapes, like those of animal cells, which have no well
defined shape. The shape descriptors are based upon Ley ton's
symmetry axis descriptionfor smooth contours. Like Ley ton's
contour description, a process grammar is proposed to allow
the description of the change of shape over time.but here we
can also deal with surfaces. We can extract these description
from conventional three dimensional models through finding
either the symmetry set of the object or the evolute. Initial
computational schemes are described along with initial results
for contours using two differing wave methods on anAMTDAP
which is a SIMD parallel machine.

There are many ways available to describe surfaces in Computer
Vision. The use of surface patches and CSG models have been
imported from computer graphics with differing amounts of
success. The generalised cylinder has been used extensively
[1] for shape description, especially when a hierarchical shape
model is being used. Superquadrics have also been used to
model biological shape [2] due to the flexibility of the model
primitives and the possibility of avoiding low level processing
by extracting the model directly from the surface illuminance.
All of the above shape descriptors are based upon representing
shape in terms of primitives which have been glued together in
some fashion. They can only be used to describe shapes which
vary over time with considerable difficulty unless the shapes
are composed of jointed sub-shapes. The aim of this document
is to propose a global shape descriptor which will allow non
jointed shape change over time in a manner similar to that
proposed by Koenderink [3].

The description is based upon Leyton's Process Grammar [4]
which is a way to describe the shapes of curves and how one
curve can be deformed into another. The aim is to extend this
description from curves to surfaces. To do this it will be
necessary to simplify the description and initially, to ignore the
links between the description and the symmetry axes that
motivated thedescription. This is because, while it is clear what
is mean by a force acting along a line, it is not obvious what is
meant by a force acting through a sheet.

To compute symmetry sets necessary for th descriptions, we
need to obtain the description from low level surface models.
Here it is done by running a wave process. This can either be
done by using Fourier transforms or by using Laplacian masks
[5] as described in the section on implementation. First, however,
we describe the development of the representation scheme

A NEW WAY TO VIEW LEYTON'S
PROCESS GRAMMAR
Leyton's curve descriptions are framed in term of local
symmetry axes. However the descriptions do not use any facts
about symmetry axes except that each symmetry axis terminates
at a unique curvature extrema [6] and that for each curvature
extrema there is a unique symmetry axis. The labelling of the
different types of symmetry axis is derived from the properties
of the associated curvature extrema. This means that it is
possible to express Leyton's curve descriptions in terms of
curvature extrema rather than in terms of the local symmetry
axes.

The curves are represented by graphs consisting of nodes and
edges where the nodes are associated with points on the curve
which are curvature extrema. Two nodes are connected by an
edge if the two curvature extrema are connected by a segment
of the curve which contains no other curvature extrema. This
means that all the graphs will be cyclic graphs. The nodes are
labeled, and carry the same label as the associated point on the
curve. These can be expressed in the following way: the node

Figure 1: The Continuation Rules for Contour Descriptors
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label set is l\^2X5 where 25= {Maximum .Minimum} , and
,£={Positive,Negative} where £ represents whether the
curvature extrema is a maximum or a minimum, and ̂ represents
the sign of the curvature at the relevant curvature extrema.

The rewrite rules that Ley ton produces are based on reasoning
about basic perceptual psychology. The argument is that the
local symmetry axes can be viewed as lines along which the
shape has been deformed. This will be ignore here because
what is being considered are all the general ways that a shape
can be deformed. While Leyton presents 2 continuation rules,
and 4 bifurcation rules, what is presented here are 4 continuation
rules,16 introduction rules, and 16 destruction rules which are
expressed as three families of rules. To make this possible we
will first define some functions that we can apply to N. These
rely on defining the negation operator for any set containing
only two elements ie Maximum = -(Minimum), Positive= -
(Negative).

We can now define the two functions:

SURFACE DESCRIPTION BY LABELLED
GRAPHS

Change extrema

Change sign

Table 1: Node Functions

There are also two equivalence relations which must be
defined, extrema equivalence and sign equivalence.

[(a,b)=e(c,d)]<=>[a=c]

[(a,b)= s(c,d)]«[b=d]

Same Extrema

Same Sign

Table 2: Node Equivalence Classes

We are only considering general surfaces. Inflections of the
curvature and maxima and minima which have zero curvature
are not stable and so can be ignored. The four continuation rules
can then be written as a single family of rules.

Continuation at node n: n -> fi(n)

The bifurcation rules are rewritten as node introduction rules.
Given two nodes joined by an edge labeled A and B the two
nodes a and b are introduced into edge as shown in Figure 1.

Introduction ofa,b between AJ1 possible only if:

A=a(a)=b=a(B)

This is afamily of 16 separate introduction rules. The simplicity
is gained from considering similarities between separate
changes. So for the introduction rules we write:

Introduction ofab in AB possible only if:

AB ->AabB <=>( A~ga(a)=b~ea(B))

The last set of rules are the destruction rules which are simply
the reverse of the introduction rules. Using Figure 1 again to
explain we have:

Destruction ofab inAabB only possible if:

AabB->AB<=>(a(a)=b)

Node Type

P

F

H

E

X

Unusual Ridge Point

Parabolic Ridge Point

Flat Ridge Point

Hyperbolic Ridge Point

Elliptic Ridge Point

Crossing of two Ridge Lines

Table 3: Surface descriptor Node types

In producing a three dimensional surface description the above
method was extended. The vertices (curvature extrema) of the
contours were replaced by the Ridge lines of the surface. The
Ridge lines are composed of all the points which are curvature
extrema of the lines of curvature of the surface[7] [8]. There are
two sets of Ridge lines because most surface points have two
curvatures (maximum and minimum). Following Porteous
lead we will colour these line red and blue to differentiate them.
These lines can now be represented by a graph which is
enscribed upon the surface. The Ridge lines are mapped onto
edges of the graph while singular^? i<ige Points are mapped onto
the nodes of the graph [9].

Figure 2: The Surface Graph Node Types

Both the edges and the nodes can now be labelled. The edges
inherit their label from theRidge lines that they represent (Red
or Blue, Maximum or Minimum of curvature, Positive or
Negative curvature). This is written as 1XX2XS. where C=
{R,B},£={M,m}J={P,N}.

The nodes need no label, as all the information about them can
be recovered from the edges which meet at the node. However,
for convenience, the label they carry denotes the special point
that they represent. The set of all node types is represented by
3\£={H,P,F>X,E}. Where these are defined in Table 3, and
depicted in Figure 2. The node rules assume that L,=(a,b,c) and
L2=(d,e,f) where the edge labels are depicted by the small
rectangles. The node labels are the larger shapes and the label
N is a meta-label which represents P, F and H. These node rules
as depicted in Table 4.

Again as in the curve description functions and equivalence
relations can be defined to aid in the description of both the
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Node Type

P

F

H

E

X

Label Relationships

a=d

a=d

a=-d

a=-d

b=-e

b=e

b=e=F

b=e=F

c=f

c=-f

c=f

c=f

a=-d

Table 4.Surface Descriptor Label Relationships

surface graphs and the rewrite rules that can be imposed upon
the surface graphs. The functions are from edge labels to edge
labels. Below are the complete set the four functions that it is
possible to define upon the edge labels using the negation
operator.

i:£,(a,b,c)-»£,(a)b,c)

a:L,(a,b,c) -

p:£,(a,b,c) -

y.L,(&,b,c) -

-> £,(-a,b,c)

•» L,(a,-b,c)

^ A(a,b,-c)

Identity

Change colour

Change extreme

Change sign

Table 5: Edge Functions

Also three equivalence relations are defined upon L where
(a,b,c) and (d,e,f) are two edge labels then;

[(a,b,c>=c(d,e,f)]«[a=d]

[(a,b,c)=e(d,e,f)]«[b=e]

[(a,b,c)= i(d,e,f)]«[c=f]

Same Colour

Same Extrema

Same Sign

Table 6: Edge Equivalence Classes

The enscription upon a surface allows a fourth and final
relation to be applied to the edges of the graph F. If the graph
is used to divide the surface in which it is embedded into
regions, then two edges are neighbors if and only if they lie on
the boundary to the same region. Unlike the other three relations
this is not an equivalence relation and so cannot be used to
divided up the edge set into separate partitions.

The rewrite rules were produced by considering the geometry
of the graph structure. Only probable changes were considered.
This means that if two features are introduced into a figure then
they are introduced one at a time, and not both together.

As has been explained the node points represent special points
on the ridge line. Here a link can be made to singularity theory.
The ridge lines are the singular points of a distance map of the
surface (evolute) projected back onto the surface. The node
points are higher level singularities. To study the evolution of
surfaces what is needed is a study of the evolution of distance
maps over time. This will give a list of surface changes which
have anon-zero probability of occurring. Theseare the changes
that should be encapsulated in the rewrite rules which are

provided for surfaces.

Unfortunately, this is not as easy as it sounds. The dimensions
of the spaces being dealt with become very high. At these
dimensions simple singularity theory breaks down as the
algebra no longer exhibits a one to one correspondence with the
topology. It may eventually be possible to prove these rewrite
rules. At present they are viable suggestions which agree with
what is known about the geometry of surfaces.

Swapping Rules
There are nine rewrite rules which involve the swapping of
edges or nodes in the graph. The number of edges and the
number of each type of labelled edge remains the same. This
means that the two graphs, the new and the original, can be
regarded as being as complex as each other. The introduction
and destruction rules change the complexity of the graph.

The first four rewrite rules are all represented in the top box of
Figure 3. These involve the swapping of two nodes which share
a common edge. The node are swapped and the edge which lies
in between them is relabelled so that L4= F(L3), where F is the
label function defined in Table 7 and L{ represents the edge
labels on Figure 3. It should be noted that these are the only
swapping routines that can occur across a single edge.

The fifth rewrite rule Sw does not involve nodes at all. The four
grey squares in Figure 3 represent any nodes. The edges
between AB and CD may be replaced by edges between AD
and BC if the labels of edges AB and CD are the same and if
edge AB next to edge CD is true. When this happens the labels
given to AD and BC are the same as possessed by AB and CD.
The final 4 rules may be dealt with together. The point where
the six edges meet is the elliptic node point. The black boxes
represent 3 hyperbolic nodes when dealing with HEa and HEs,
while they represent flat nodes when dealing with FEs and
FEa. The edge labels L. and Ld are defined in terms of the edge

PF
PX
FX
FH

Sw

HEa

FEa

HEs

FEs

l- M - 3 - N -2 1- N _ 4 - M -2

/ \

Figure 3: The Swapping Rules
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Name

PF

PX

FX

FH

HEa

HEs

FEa

FEs

Node Types

P

P

F

F

3*H

3*H

3*F

3*F

F

X

X

H

E

E

E

E

Label Function

PY

P
Y

ay

I

I

ay

ay

Table 7: Node Swapping Functions

labels La and Lb thus; L=F(Lb) and L^FtL,).

Introduction Rules
The first three node introduction rules, IF,IP,IH, can be
dealt with together. The nodes are introduced along an edge
labelled L r The edges leading from the node pair are
labelled Lv while the edge between the node pair is L2=
F(Lj) where F is the label function defined in Table 8. To
introduce a pair X node there are two choices available as
can be seen in Figure 4. The X nodes are represented by the
points where four edges meet. The simpler of the two is
introduction upon a pair of edges, 1X2. This can occur when
edges Lj next to L2 is true and L^aCLj). The new edges
created are defined thus; L3=Lj and L4=L2. The introduction
of a pair of X nodes on a single edge is more of a family of
rules rather than a single rule. The two edges that are
introduced are not defined by the edge in the graph as in all
the previous rules, they are only constrained. The edge L3 =
L, but all that is defined about the edge L2 is that
L O L j ) . The family of rules can be written as IX1(L2),

IF
IP
IH

IE

1X1

1X2

i— N - 2 - N - 1

i •f

DF
DP
DH

DE

DX1

DX2

Name

IF

IP

IH

1X1

1X2

IE

Node Type

F

P

H

X

X

E

Label Function

y

P
a

Not Applicable

i

Not Applicable

Table 8: Node Creation Functions

where this is the introduction of a pair of X nodes on an
edge with the two edges coloured differently to L, being L2.

The final rewrite rule is IE. This has no edges to define at all
because, unlike in all the other introduction rules, edges are
destroyed rather than created. It Figure 4 the grey circle
represents a hyperbolic umbilic, again the four lines meeting at
a point represents an X node and the six line meeting at a point
represent an E node. The relationship between the edge labels
Lx and L2 is that L2=a(Lj).

Destruction Rules
These are simply the inverses of the introduction rules. For DF,
DH, DP, if the edges labels for the edges either side of the node
pair are the same, call it L, and the edge in between the edges,
labelled L2, is such that L2=F(Lj) where F is the labelling
function for the equivalent introduction rule then the nodes
may be replaced by a single edge labelled L r Similar processes
will give DE.DX1 and DX2.

This classification uses only local rewrite rules to describe the
ways that a shape can change. However these rules can be used
to provided a language to describe both local and global
changes in amorphous shapes, as well as be used for object
recognition and deformation prediction.

IMPLEMENTATION
It is necessary to find the ridge lines of a surface to create a 3D
description. These ridge line could be found by calculating the
curvatures at each point and then searching the surface for the
maxima,minima and zeros of curvature. This however would
be extremely time consuming. The method suggested to find
the ridge lines is to extract them using either the full symmetry
set, or the evolute of the surface.

If the symmetry set of the surface is used to find the description
then projecting back the lines which terminate the symmetry
sheets onto the surface will give the ridge lines. The curvature
at each point is the radius associated with the sphere centered
at the point on the symmetry set which touches the point when
projected back onto the surface. If the evolute is used to find the
surface description then the rib line of the evolute can be
projected back in an identical manner. (This is because the rib
lines of die evolute are the same as the bounding lines of the full
symmetry set.)

At present it is assumed that the surface will be provided as in
a binary voxel representation. The idea is to try applying both
the method of Scott to produce the symmetry set together with

Figure 4: The Introduction/Destruction Rules
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Figure 5: The Contour Figure 7: The Evolute of a Contour

the a method forextracting the Evolute using Fourier transforms.
At present both are implemented on 2D binary pixel images
using an AMT DAP which is an SIMD array processor.

The Scott method is uses a two step wave/diffusion process
where at each step the wave process is approximated by
convoluting with a Laplacian mask to solve the wave equation,
while Ihe diffusion step is performed to remove the high
frequency terms of the wave which get left behind. This
produced the symmetry axes, however the larger the radius of
curvature the larger the area of localization to the end points of
the symmetry set. Also the larger the radius of the symmetry
sets the harder it becomes to detect them. This is implemented
on the DAP by performing the convolution simultaneously at
different pixels. The routine is provided with a binary contour(
as shown in Figure 5. The resulting output is an image. At each

Figure 6: The Symmetry set of a Contour

pixel is stored the maximum value of the energy of the wave-
diffusion process taken over time. This is show in Figure 6.

The second method is to apply the wave process in the Fourier
domain. This method more exactly simulates the wave process
and so the smoothing of the contour need only be performed at
the start rather than at each time step. This leads to the
production of the evolute (and a weak version of the symmetry
set) instead of just the symmetry axis as shown in Figure 7.

This work surgests severage areas for work to proceed. The
AMT DAP can be used to find thes descriptions from shapes
which are provided to it as binary voxels.

A three dimessional hieracical shape space can be produced,
similar to the two dimensional shape space produced by
Leyton. This will encapsulate both the different complexities
of shapes and the process history which will transform one
shape into another.

Finally since the shape descriptor is a simple graph. Model
matching may be accomplished using existing model matching
techniques.

CONCLUSION
It may be possible to check if these rewrite rules are
mathematically correct by examining the critical points of the
evolute of the surface as it changes over time. While this is has
been done for the case of 2D contoursf 10], it has not been done
for 3D surfaces. This is due to the fact that problems in
singularity theory tend to explode when the dimension of the
problem gets too large. The increase of dimension between
contours and surfaces is that of moving from a five dimensional
space to a seven dimensional one. While the mathematics of the
descriptors remains unchecked it is not possible to produce a
systematic way to catorgarise all the possible rules and
descriptions.

Despite this it is also possible to examine simple shapes and to
then produce descriptions for them. These will then be used to
check that the rules work, and to try to find any rules that have
been missed.

The symmetry sets of the surfaces must also be found. The
nature of the two 2D algorithms means that the 3D algorithms
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will be very similar, For the Wave/Diffusion process all that is
required is a 3D convolution, while the Fourier transform is
decomposable and this means that increasing the dimension
will not complicate the program.
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