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Abstract

A highly efficient means of describing curves, surfaces
or other configurations in space (or space-time) is to ex-
press the position vector as a sum of functions defined
over some some interval in a space of one or more “im-
plicit variables”. The most familiar forms of these basis
functions are the polynomial, trigonometric and super-
quadric. There seems no reason, however, why we should
be limited to functions having a simple analytic form.
In this paper I describe a method of deriving “good” ba-
sis functions empirically from observation of a group of
shapes - or of a single shape showing a high degree of
self-similarity.

There is an intimate connection between the search
for natural basis functions and the study of transfor-
mation between and within shapes. Some light is shed
upon the “special case” of the Iterative Function System
and also - perhaps unexpectedly - upon the approach to
self-organisation in neural networks associated with the
name of Kohonen.

1 Introduction

It sometimes seems that computer vision consists of an
attempt to answer two, and only two, questions:

e How do you solve the long-range correspondence
problem?

e What would you do if you could?

By “long range” I mean to imply the sort of undercon-
strained, multi-dimensional search that confronts you if
you want to match a 3-D model to an image; if you
want to mimic human abilities in motion fusion; if you
are doing stereo without precise calibration; or if you
are looking for non-local structural regularities (such as
symmetry or periodicity under distortion). Straightfor-
ward search is ruled out by the combinatorics - and
hill-climbing by the mogelesque topography of any cost-
function you might care to define. The state of the art
has an “interactive” aspect - meaning that a human op-
erator must be in the circuit to rescue the program from
itself from time to time.

There is nothing very sophisticated about the corre-
spondence techniques used in the experiments reported
in this paper. They are sufficiently good to yield the
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correct result in a number of noise-free and relatively
“friendly” cases. The focus is on “natural” shape de-
scription and how it might be acquired in a perceiver
by experience of a variety of shapes viz. it is the second
great question of computer vision that we are addressing.

2

We deal only with shapes in the form of closed, SO con-
tinuous curves in two dimensions and their description in
terms of the sum of basis functions defined over a single
continuous parameter §. Open curves, space curves, dis-
continuous curves, surfaces, solids etc. may be treated
in an analogous way; the restrictions are made to keep
visualisation simple and the paper short.

= ﬂan(ﬁ) + G1G1(9) + GQGQ(G) + (13G3(9) +... (1)

y = boGo(0) + b1G1(0) + b2G2(0) + b3Ga(0) + ... (2)

This is the general parametric form under discussion.
We assume that the number of functions G in use is fi-
nite. What should the G’s be, though? We can, without
loss of generality, require that they are orthogonal over
6. We might also hazard that a “natural” choice of Gy
under almost any circumstances is that it be a constant.
But can we specify any other desiderata?

In 1987 I introduced the “alternative snake” - a spline
in which the G’s are Fourier components up to some
fairly low order - and showed that it gave concise descrip-
tions of some biological shapes. (The common paramet-
ric form for the ellipse is an order 1 alternative snake).
The Fourier form handles cusps rather easily but it is
not very efficient for rectilinear shapes such as rectan-
gles and triangles. For these we might think of using
fractional Fourier components (as with superquadrics)
or simply piecewise linear functions. But many things
in this world - even if we restrict ourselves to closed 2-D
curves - are neither piecewise linear nor, I regret, eco-
nomically described by the alternative snake. Rather
than search for the “golden” set of basis functions (it al-
most certainly doesn’t exist) perhaps we should explore
a horses-for-courses policy.

A “good” set of basis functions (or other types of prim-
itive) can only be defined, I would suggest, in terms of
of the world in which it is to be used. Given the world
of, say, crabs we would require of an optimal system of
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shape encoding that it was economical and had good con-
stancy properties. Thus: we would not expect to have
to change our description entirely as a young specimen
matured into an adult; or as it moved its legs; or as we
shifted our attention to other individuals of the same or
a related species; or as we shifted our viewpoint....

We would not be concerned if our crab-system proved
to be inefficient and inadequate when we turned our at-
tention to the world of large ungulates, say. Things
might be different, however, in a universe in which it was
the nature of crabs to slowly metamorphose into horses.
Then we might have to learn to see things differently.

Seeing is an activity normally undertaken for some
purpose. However interesting a horse may be to the dif-
ferential topologist, to the more general type of human
being it offers a range of affordances that includes: be-
ing bitten or kicked by it, eating it, riding it, pulling
something with it, racing it, wearing it and worship-
ping it (the Trojans did all these, including the last).
Trainers, jockeys, butchers, hunters... presumably these
have horse-perception systems that are “tuned” to elicit
various possibilities for action. There seems every good
reason why the “geometry of seeing” should be closely
coupled to the “geometry of behaviour” both in nature
and in robotic systems. An interesting discussion of this
coupling in the context of hand tools is to be found in
Brady and McConnell’s discussion of the “mechanic’s
mate”. Unfortunately there is no room for any more
ecological optics in this paper!
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Suppose I am given two closed curves and told that they
stand in a relationship of affine transformation. Can I
check this information, and can I make some use of it in
the future? I must, of course, establish correspondence
between the two shapes (which point goes to which). Let
us assume for the moment this is easily done. The asser-
tion that the shapes are an affine pair implies that there
exist at least two distinct linear expressions equating to
zero for all sets of corresponding points.

a-p=0 (3)

where p is the vector [1,z1, y1, 22, y2]. The subscripts
on x and y refer to the two curves. a is a non-null vec-
tor. It can be easily shown that values of a may be gen-
erated by determining the eigenvalues and eigenvectors
of the 5x5 matrix Y pp”, where the sum is over sets of
corresponding points. If the two curves are truly affine
transforms of each other then there will be two eigenvec-
tors a satisfying (3) associated with two zero eigenvalues.
(Special cases excluded..)

We will call an a associated with a zero eigenvalue an
invariant vector. There are three more eigenvectors - in
general associated with non-zero eigenvalues - that we
will call basis vectors. For these it is the case that the
dot product a- p is not in general zero, but varies from

one set of corresponding points to another. Let us refer
to them as Go(0),G1(8), G2(0) - in descending order of
eigenvalues let us say. What is 67 It is simply a label
- a means of distinguishing one cluster of correspond-
ing points, or cluster of values for the three G’s, from
another. There are numerous practical issues to be ad-
dressed but there is no canonical mapping between the
labelling parameter and position, arclength or whatever.
We do not care if our basis functions are analytic - only
that the right combination of values is spanned as we
travel through the range of 6.

The functions G generated from the basis vectors may
serve to expand either shape - or any shape related to
them by affine transformation - in the form (1). Note
that the functions themselves are not necessarily orthog-
onal over @, because of its arbitrarily defined density.
(I apply Gram-Schmidt orthogonalisation before further
use). Note also that there is no reason to expect them to
break cleanly into a constant term and varying functions.
The procedure just described cannot “learn” that posi-
tion is a quality independent of deformation unless these
are, in some well-defined empirical sense, independent.
(If a shape changes its position much more often than it
distorts, for example, then there are simple procedures
for separation).

-

Suppose you give me three curves and tell me that they
constitute an affine trio. To test this I establish (3-way)
correspondences and augment the vector p by the coor-
dinates of the third shape. My 7x7 covariance matrix
should now yield four zero eigenvalues; they correspond
to the mappings between two pairs of shapes, the map-
ping between the third pair being not independent. I
still recover three basis vectors which should define for
me three basis functions G which will simply be linear
combinations of the G’s I would obtain for any pair of
the shapes. I note in passing that we may in this case
eliminate the constant term from p since the system now
has enough information to eliminate the effects of trans-
lation, as well as affine distortion, by linear combina-
tion of the three shapes. From the result 6x6 variance-
covariance matrix I would obtain three invariants and,
again, three basis vectors. I will assume, however, that
the constant term is “given”.

What if I find that there are fewer than four zero eigen-
values? Then you have lied! But the situation may not
be uninteresting. If I have two zero eigenvalues then it
may be the case that you have given me two affine pairs
and a third, independent shape. Or the three may be
nter-related in a more complex way. In any event the
number of non-zero eigenvalues tells me precisely how
many basis functions I need in order to expand all the
shapes - and the corresponding eigenvectors give me the
means to construct a set.

Given a family of shapes generated from a finite set
of basis functions I can determine those functions (or



linear combinations thereof) from observation of a suffi-
cient number and variety of members of the family. This
is provided, of course, I can establish the correct corre-
spondences.

5

The correspondence problem is reflexive: the global
results follow from the correct matches; the correct
matches are the ones that give the best results. Iter-
ative swapping back and forth between local and global
processes seems to be the order of the day.

To explore the ideas of this paper in a quantitative
and visual way I have written a program that takes a
set of curves as data and then attempts to find a limited
set of basis functions with which it can expand them
all. The multiple correspondence is mediated through
a single parameter 6. Each input shape is assigned a
“snake” - a spline defined as a mapping from # to image
space. The snakes are alternately:

1. Subjected to a spell of “data drive” during which
randomly chosen data points identify the nearest
point on their snake and pull it towards them.
Gradient-based methods might serve as well but I
was interested in studying the stochastic method -
which is essentially that used by Kohonen in es-
tablishing compact mappings between parameter
spaces and vector spaces of observables. Some
smoothing of the spline is necessary in the early
stages to avoid points being “left behind”.

2. “Basis function limited”. Given a set of snakes in
a variety of configurations we can construct a set of
basis functions in which they can be expanded. We
are interested in limiting the allowable variation, so
we take only the “best” N basis functions and fit
them in a least squares sense to each of the snakes.
They may be further changed by “data drive” from
their new shapes.

The procedure is iterated until no significant change
occurs throughout a cycle. Figure 1 shows the outlines
of four human fibroblast cells. Figure 2 shows the suc-
cession of snake positions as they “lock on” to these out-
lines. The starting position in each case is the circle
roughly centered over each shape. The number of basis
functions was here restricted to five - shown in figure 3.
Note the (almost) constant function and the “quadrature
pairing” of the other four. Although they resemble si-
nusoids they are significantly different from them. They
represent something of a compromise between “rounded”
functions and piecewise linear ones - as a result of their
having to cope with both smoothly curved and angular
structure.

Figure 4 shows the resulting “fit” to the fibroblasts
when the number of basis functions is limited to three.
This implies that the fitted curves must all be affine
transforms of each other - as careful inspection reveals
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them to be. Figures 5, 6 and 7 show the results for three
families of synthetic shapes. Note that the basis func-
tions all have characteristics “appropriate” to the fam-
ily. Figure 7 consists of “alternative snakes” generated
from a constant term and the first two pairs of harmon-
ics. Note that the basis functions appear to be simply
(mixed) sinusoids.

6

What is a shape but an assemblage of “sub-shapes” that
have a tendency to resemble each other and - sometimes
- their parent? There are many types of “self-similarity”,
using the term in a loose sense. There are symmetries -
both “discrete” and “differential” - in which the whole
shape maps back into itself. There are varying degrees
of resemblance between sub-parts, such as that between
my two hands, or my hands and my feet. There are
certain recursive-type structures in which the parts are
copies of the whole and to which the term self-similar is
applied in its strict “fractal” sense.

Each thing - save the most trivial perhaps - is a world
of smaller things between which we can seek similarity,
and thence obtain invariants and basis functions.

[ some empirical results here ]

An interesting question concerns the conditions un-
der which a set of internal invariants is “complete” in
the sense that they completely define the shape. A
well-understood case is the Iterative Function System
in which a structure is defined by “tiling” it with affine
copies of itself. Only the transformation parameters need
be stored - since they define the shape uniquely! The
standard example is the spleenwort (?) fern shown in
figure 8 which can be seen as composed of four affine
copies of the whole thing. The fern may be regenerated
simply by moving a point around by applying the affine
mappings randomly and repeatedly.

Our analysis suggests there may be useful possibilities
of lifting the affine restriction on the IFS by “upping the
dimenisonality” with hidden variables. The self-similar
maps would then have the general form

r/= Ar (4)

where r is a position vector augmented with hidden vari-
ables (which might include the actual Euclidean third
dimension).
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figure 8
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