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This paper describes how a framework for user-programmable
image interpretation has been implemented as a computer
vision system capable of executing a declarative task
description. The system has been applied to an industrial
inspection task, and its performance has been compared with
that of an existing procedural program written specifically for
the same task. These show that the system is capable of
achieving a similar level of performance but can adapt its
analysis strategy more flexibly.

Ia a previous paper [1], we described a framework for
representing and executing visual tasks. The system has
now been implemented more fully and applied to a real
industrial inspection task. @ The most significant
development reported here involves an application
independent control strategy which attempts to satisfy
explicitly stated, task-specific goals by reasoning about the
collection and interpretation of evidence.

The overall objective of the project is to develop an
application generator for complex but specific visual tasks,
based on definitions of the task goals and expected image
appearance rather than prescriptions of how the tasks are
to be performed. The potential advantages of this
approach are that: the end-user can develop and modify
applications directly because expert knowledge of machine
vision is not required; the applications are robust because
the system can make systematic use of task knowledge and
reason about the extent to which goals have been satisfied;
the effort involved in developing new applications is
minimised by separating out the task-specific aspects of
the problem from the generic.

The remainder of this paper describes, briefly, the process
of defining a task, gives an overview of the execution
control strategy and describes its implementation,
demonstrates the application of the system to the problem
of inspecting vehicle brake assemblies and compares the
results with those obtained by a less systematic but
exhaustively tested solution to the same problem [2]. The
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principle issue addressed is the practicality of generating
robust applications for complex visual tasks without
specialist knowledge of machine vision. The nature of the
information which the user must provide is critical. The
ergonomics of the user interface will also be important ina
final system, but this is not considered here.

DEFINING VISUAL TASKS

The new work described here builds on an existing
framework for representing and executing visual tasks
which is described elsewhere [1]. What follows is a brief
overview.
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Figure 1. Stages in the development of a world model

The stages in the creation and execution of a task
description are shown schematically in figure 1. The user
is assumed able to specify the task in an appropriate way
but not to know how it is to be executed. The specification
takes the form of an inter-related set of sub-models
(model elements), arranged in a structure (the world
model) which both defines the task and models image
appearance. Task goals are embodied as explicitly labelled
goal elements. Each model element is defined by the user
to be a specialisation of some system prototype, chosen
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from a documented library. A repertoire of
representational forms and image analysis methods are
associated with prototypes as submodels, and are inherited
by model elements. The world model specification only
becomes useful after an interactive training session which
uses example images to define free parameters in the
model. Training also allows a utility value tobe assigned to
model elements and submodels to indicate their
usefulness in the particular task.

A task is executed by attempting to instantiate the goal
elements, which generally leads to instantiation of the
world model as a whole. Control of instantiation is
achieved through a production rule system with an
application-independent rule-base. = Most rules are
predicated on the state of model elements and their
inter-relationships. Rule firings can alter the state of the
world model, invoke procedural activity such as image
processing, or both.

The system currently comprises a prototype library
catering for scenes containing rigid objects of axially
symmetric, circular, or polyline shape forms. The control
system deals with the application of geometric constraints,
cue generation, and the verification of hypothetical
instantiations of the model.

CONTROL STRATEGY

The instantiation of an object from an image requires
three steps: the application of constraints, cue generation,
and verification. In this paper only geometric constraints
and constraints on the expected number of instances of an
object, or cardinality, are considered. The latter are
further assumed only to take on the values 0 or 1.

The strategy for the exploitation of geometric
relationships in object location is first to use relations
which apply directly to the image itself or some object of
known position, then to consider relations which involve
one or more levels of indirection. Relations labelled as
fixed are applied first in each case. If the object position
becomes established to better than a certain precision this
process will terminate, otherwise all possible relations
with a greater than a minimum utility will be exploited.
Whenever an object becomes located, the constraints on
related unlocated objects are updated.

If geometric constraints are sufficiently precise, the
prediction of the object position is itself an object cue. If
they are less constraining, it is sometimes possible ( for
classes of object for which orientation is not important ) to
generate a line segment which can be expected to cross the
object, and to obtain a positional cue by searching along
this line and matching to a grey-level profile model. If
neither of these cases applies, cues are generated by some
operator applied over the region of interest defined by the
geometric constraints.

A cue generator can yield a number of cues which may not
be in one-to-one correspondence with actual objects, due
to confusing features and other causes. The way in which
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the system responds to a cue depends on the confidences
associated with all the cues, the expected number of
instances, and the task goals. If the favoured cue
generation method yields no cues, the system will
tentatively assume the object is not present. However, any
evidence to the contrary may cause the system to try to
resolve this by applying an alternative method. At present,
the system can only operate properly in cases where there
is only ever expected to be at most one instance of each
object in each image. In this case the cue with highest
confidence is assumed to arise from the object and the
others are initially ignored. Failure to verify, or external
evidence that the interpretation is inconsistent, might
cause verification to be repeated with an alternative
interpretation of the cues.

Verification is the process of determining if a cue actually
corresponds to an occurrence of the sought object, and if
so instantiating the relevant model element. Model
elements, and more particularly their submodels, are each
attributed with a confidence value when they become
instantiated. This is a probability estimate derived from
the match between measured parameters of the instance
and the corresponding model. The nature of these values
is independent of both the task and the methods which
generate them, and as such they are the primary
parameters used to determine control.

It would be optimistic to expect that in every case a cue will
provide adequate information to allow full instantiation of
the object to follow directly. In some cases cues must be
refined in one or more stages to provide a suitable input for
an instantiation method. Similarly, verification might
involve several steps if more than one submodel needs to
be instantiated.

IMPLEMENTATION
The Rule Base

The strategy outlined above is implemented as a
production rule system. The control rules have been
designed to be independent of specific model types,
allowing the system to be extended by the addition of new
prototypes. Some information about specific methods,
prototypes, or user-defined model elements is also best
represented in the form of rules. This is only useful if such
rules can complement the existing rule base without the
control strategy needing to become either ad hoc, or
unstructured and therefore potentially inefficient. Such
rules cannot therefore directly cause actions but instead
assert priorities for possible actions. Several such
assertions, or none, might apply in a particular
circumstance such as in attempting to choose the best cue
generation method. If no special conditions apply, a low
priority rule in the main rule-base will fire to select the
method of greatest utility. If other rules apply, these will
fire first to cause a particular method to be assigned higher
utility and so take precedence.

In the current implementation all parameters of all
submodels are modelled as independent variables by first



order statistics of the values encountered in training.
Confidence values are calculated using Bayes’ rule to
combine matches from the different parameters. This
assumes, purely for simplicity, that parameter
distributions can be adequately represented by normal
distributions although this is not always true. In order to
generate more reliable confidence factors it will be
necessary to use a more general model of parameter
variability.

Applying Geometric Constraints

Geometrical relationships can be defined between any two
objects and are limited to the image plane. Each object
position is represented by a system-defined vector which
can be considered as the axis of an object-centred local
coordinate system. In order that relationships can be
established with respect to the image (or between images )
each image also has an associated vector. All distances are
in user-defined world units which can be related to pixel
units by a calibration process. Each shape representation
for an object hasa well defined relationship with the object
vector. The length of each object vector is related to the
size of the object, to optionally allow geometric
relationships to be scaled so that distances are relative to
the object size. The problem of defining a unique vector
for an object with several symmetry axes is not addressed
here. However, where the vector orientation is ambiguous
or undefined this is taken into account when defining
associated relationships. In particular this means that a
relationship between two objects might not be as
constraining as its inverse.

Geometric relationships are defined by the relative
position of two vectors in terms of the distance between
their origins, the angle between the first vector and the
line joining the origins, and the relative orientation
between the two vectors. The user only specifies the
special cases of the relationship being nominally fixed, or
scaled. The three parameters are modelled independently
from statistics on their values acquired during training.
Initially, the positions of objects are indicated by the user,
by reference to an iconic display overlayed on each training
image. Subsequently, wherever possible, the model is
updated using the positions of objects located by the
system itself. Consistent feedback between the user and
the system regarding the estimated and actual location of
an object isachieved through an iconic display. This can be
arbitrarily defined by the user, but defaults to the object
outline as defined by one of the shape models for the
object.

The chief use of geometric relationships is to define
constraints on the position of an object vector, in terms of
an area containing the possible locations of the vector
origin together with a range of allowed orientations. This
is based on the extremes and standard deviation of values
observed during training. Constraints can also be
propagated through more than one relationship and their
effects can be combined. In order to transform the range
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of possible vector positions into the minimum area
containing the entire object ( which is usually what is
required for the application of a cue generator ), it is
necessary to convolve the former with the shape of the
object. This is approximated by a simpler calculation in
which the minimum enclosing rectangle for the object is
combined with the vector constraints to produce a region
of interest bounded by an image-aligned rectangle. Figure
2 shows how the area of interest for object B is derived
from its vector constraint which hasbeen calculated from a
range of possible positions for the related object A which is

in turn related to the image.
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Figure 2. (a ) shows a fragment of world model indicating
relationships between objects A and B which appear as in
(b). The propagation of constraints is shown in (c).

()

Cue Generation

At present the system contains centre of gravity [3],
threshold, and edge detection cue generators. The
appropriateness of these operators are learned during
training as follows.

Cue generation methods are ranked in a prior order of
utility based on their suitability for the object class and
their computational expense. This means for example that
the system never normally attempts to use axial cues for
circular objects, and that simple thresholding is usually
applied first. During training, the user is able to indicate
that a displayed result is unsuccessful and consequently
the utility of the method for that object is reduced.
Conversely, a consistently successful method will attain
high utility. When attempting to locate and identify a
particular object, the system might try several methods in
succession, until the user confirms that one has given a
correct or at least an acceptable result.

Each cue method has a model whose form is independent
of the associated object. The purpose of these modelsis to
define any parameters required by the cue operator, and to
model typical properties of the cues to allow a confidence
value to be given to each cue. This value is important in



aiding control but can allow grossly abnormal cues to be
rejected immediately. The model is a set of parameters
likely to aid discrimination of true cues from false ones.
For example, the centre-of-gravity operator gives false
cues corresponding to external object symmetries. These
can usually be easily separated due to the different
grey-level ranges in the vicinity of an external cue and a
true object cue. This grey-level value is therefore one of
the properties of the associated model. It cannot be
guaranteed that in all cases these parameters will be
useful, but the intention is to provide a small fixed number
which will be useful in the majority of cases.

All cuesare of the same form: a line segment together with
an arc or region description and a confidence value. For
example, a threshold cue consists of the thresholded
region and the associated line is the maximum chord of this
region. Methods exist to transform this standard form into
whatever is required as the input to each shape
instantiation method, but the transformation is usually
trivial, involving a relationship between the line segment
and the object axis.

Verification

Verification usually involves an attempt to instantiate a
shape model for the object given a cue, and using both
shape and grey-level information [4]. Verification can,
however, in some cases be achieved by instantiating other
properties of the object. The system contains circular
shape models ( for circular objects), axially symmetric
shape and axis profile models ( for axially symmetric
objects), and a polyline shape model (potentially for all
rigid objects). Many of the associated image analysis
methods are based on the systematic use of grey-level
profile models associated with line segments. These are
used principally to model object boundaries in order to
facilitate boundary detection leading to shape
instantiation, and in other ways, such as to represent axial
profiles. The choice of model to be used for verification is
determined by utility as for cue models and also by an
importance value. Importance effectively takes on one of
two values, and is set up as a predetermined property of
each submodel. Cue methods all have low importance
which means that the existence of a specific type of cue is
neither a sufficient nor necessary condition for object
instantiation. Conversely, most shape models have high
importance which means their instantiation is sufficient to
instantiate the object. = Model elements which are
essential to task goals are automatically labelled with high
importance prior to training.

A further way of inferring the existence of an object is
through instantiation of its sub-parts. For example, an
unimportant might be related geometrically to other
components which are important, and so its position could
be determined as a means to locating these objects. The
existence and position of the component can be inferred
from those of any modelled sub-parts it may possess,
without its boundary needing to be verified.
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Confidence values represent the intrinsic probability that
detected image features really correspond to an instance
of the model element. Typically, a definite decision has to
be made as to whether an object is present or not. This
decision does not necessarily correspond to the most
probable interpretation based on the confidence factor,
but depends also on the nature of the task. For example
the system should treat the case of an object being
instantiated with confidence 0.5 differently if the aim is to
detect all occurrences of the object with as low a false
negative rate as possible ( for instance if the object
corresponds to a rare but important defect ), than if the
task is to ensure that all cases of the object being missing
are detected. The user must therefore supply this
information, by specifying target error rates for the
relevant goal elements. For this reason the model element
for the object is not itself the goal frame, but is related to
an ‘is-present’ goal frame which is dependent on the
confidence factor of the object, its expected cardinality,
and the task specific conditions.

THE BRAKE ASSEMBLY APPLICATION

The system has been applied to the problem of detecting
specific faults in a car rear drum-brake assembly. A typical
view of an assembly is shown in figure 3. Each of two brake
shoes is imaged separately but we consider only one of
these views. The goals of the inspection task are : to
determine whether the assembly is right-handed or
left-handed ( distinguished principally by the presence of
springs but no lever or vice versa ); if left-handed, to verify
that two springs are present; and in either case to verify
that a retaining cap is present and that the brake lining
thickness is within a specified tolerance limit.

Figure 4 is a schematic of the relevant components as they
appear in the camera views. Figure 5 shows the resulting
world model.

Figure 3. Typical image used for analysis.



Left-handed brake

Figure 4. Schematic sketch of important components of a
brake image.

RESULTS

The principal result is that the system is able to
successfully use the world model description to produce an
execution strategy which is efficient and which compares
well with an existing hand-crafted solution to the same
problem.
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Figure 5. The World Model for the Brake Inspection Task.
Large boxes are model elements. Goal elements have double
borders; system defined sub—models are not shown except for
the lining shape model ( dashed ).

The current system hasbeen tested using a small sample of
assemblies viewed using an identical imaging geometry to
the existing system. The performance of the existing
program is well characterized from several years of routine
use and each test has an error rate in the range 0.1 - 0.3 %.
No equivalent large-sample figures are available for the
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current system. Since the methods for object verification
are similar in many cases in the two versions it can be
assumed that the performance of the current system will
be at least as good in these cases and results on small
samples confirm this.

The current system is able to reproduce non-obvious
behaviour of the existing system. For example, the springs
( axially symmetric objects ) are visible not because of a
clear boundary but from the pattern of highlights from the
coils along their length. Verification is in this case carried
out with respect to an axis profile model. The system learns
this by discovering that this is the only important submodel
which can be instantiated with consistent success, ie which
also has high utility.

As an example of the difference in behaviour of the two
systems, consider the location of the brake shoe. The
programmed system locates the shoe by finding three
points on the circumference of a circular hole within it, and
one special point on the shoe boundary. Measurements on
other objects are made with direct reference to the located
shoe position. These are subject to failure if for example
one circumference point is incorrect, leading to a large
error in position which is not immediately detected. If
location of the shoe fails the entire analysis has to be
aborted. These shortcomings are acceptable in this
application because the error rate in finding the points is
very low ( less than 0.1 %), however in general the
inflexibility of this approach may lead to unacceptably poor
reliability. The current system is capable of learning that
the shoe itself cannot be directly located and so can mimic
the programmed method. It usually uses the cap and the
hole to infer the presence and location of the shoe. Figure
6 shows the shoe icon and the initial position range. Figure
7 shows how this is updated after the cap has been
instantiated. High precision in location is unnecessary
since the shoe position is only used as a guide to locating
other objects by enabling cues from geometry to be
generated. Both versions use similar methods to locate
the hole but the current system should be even more
robust since it detects more boundary points and a
confidence factor is used to check that the location has
been successful. If this is not the case, alternative
strategies will come into force which can enable the
interpretation to succeed by for instance locating the shoe
using other features, or by instantiating related objects by
other means.

The system currently uses 150 rules in total, comprising
about 110 for the main rule-base and the rest for handling
geometric relations and representing generic knowledge.
The world model compiles into about 1250 application
specific facts in addition to 1000 facts representing the
prototype hierarchy. A typical analysis involves about 200
rule firings.

The speed of the existing system is just under 2 seconds per
image of which control is a negligible proportion,
compared to a total of about three minutes for the current
implementation. The bulk of the extra overhead in the



Figure 6. Shoe icon and uncertainty in shoe position with
respect to the image.

current implementation arises from the production rule
system which is implemented in Inference ART. Thereisa
small additional overhead due to an inter-process
communication mechanism which links the production
rule system and the image processing subsystem.

CONCLUSIONS

It has been demonstrated that the system can successfully
employ a declarative task description in order to execute
significantly complex visual tasks with performance
comparable to that of a conventionally programmed
approach. The control mechanism allows the analysis to
be more robust, although it imposes an overhead on the
execution efficiency. In the task involved, interpretations
of objects are independent and so the control strategy does
not need to support multiple interpretations.

The principal disadvantage of this system is the speed of
operation. However it is important to distinguish between
inefficiency due to implementation and that arising from
an inherently inefficient control strategy. The ART
implementation is ideal for experimental development but
is not suitable for for a real inspection system. For tasks
like the example considered here, it would not be difficult
to implement a simple but specialized production rule
system which could reproduce the behaviour of the
current system, but be far more efficient. This would take
advantage of the small number of types of relationship
used in the representation, and use fixed forms of
representation where possible. This might allow a
rule-based system to achieve a practical level of execution
efficiency.

Assuming the world model structure is sound, and that
appropriate prototype methods are available, the
performance of any application using this system will be
determined by the validity of the statistical models created
during training. One major shortcoming of the current
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implementation is the simplicity of the model of
parameter variability, compounded by the fact that both
model parameters and estimates of matching performance
are set up simultaneously during training. This means that
an inadequately trained system will operate with unknown
unreliability and may only give poor performance. More
complex statistical modelling may well require a larger set
of training examples to become adequately defined. Any
calculation of confidences should take into account the
uncertainty in the model data.

It is intended to continue this work to apply the system to
the task of chromosome analysis, where the scenes and the
model are less well constrained [5]. This will involve
extending the control strategy to deal with multiple
interpretations, and expanding the range of prototypes to
include non-rigid object representations.

Figure 7. Instantiated cap and uncertainty in shoe origin.
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