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The method of Grimson, Lozano-Pérez and others, for the
generation of feasible interpretations of scenes with sparse
data, has been developed and implemented by the present
authors on a distributed array processor, the AMT DAP,
which operates in SIMD mode. Measurements involving
the location vectors and the surface normals at m data
points, considered in pairs, are compared with the
maximum and minimum values associated with the nxn
pairs faces of a polyhedral object model, in a process that
exploits nxn parallelism.

This paper discusses the subsequent validation of the
interpretations, in which data points have been assigned
provisionally to object model faces.

In many applications, the key task for a robot’s vision
system is to supply the control unit with a quantitative and
symbolic description of its surroundings, telling the robot
what is where in the scene being viewed!. One approach to
the problem is to enable a robot to identify an object from
a set of known objects, and to locate it relative to the
robot’s sensors.

Murray and Cook’, Grimson and Lozano-Pérez? Faugeras,
Ayache and Faverjon®, and others, consider objects in the
form of separate, possibly non-convex, polyhedra, for
which there are accurate geometric models. An object may
have up to six degrees of freedom relative to the robot’s
sensors, which are assumed to be capable of providing
three-dimensional information about the position and
orientation of a small set of points on the object.

The general approach to the problem is based on the
hypothesis, prediction and verification paradigm that is
widely used in Al First we generatc feasible
interpretations by means of simple, generally pairwise,
geometric comparisons between object models and sensor
data, and then we test the interpretations, in detail, for
compatibility with the surface equations of a particular
object model.

Several authors have implemented sequential algorithms,
in which measurements involving the location vectors and
the surface normals at m data points, considered in pairs,
are compared with the values associated with points in
nxn pairs of object model faces. It is found that, with
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simple geometric constraints applied to sparse data
independently of the coordinate frame of reference, the
possibilities can generally be whittled down to just a few,
frequently only one, feasible interpretation. This is done
without resort to a detailed solution of the surface
equations. Nevertheless, in sequential form, the algorithms
are not generally fast enough to offer a practical solution
to the problem.

Until recently the best parallel algorithm for the generation
of feasible interpretations was one implemented by Flynn
and Harris on the Connection Machine at MIT*. This
achieved parallelism at the expense of processor numbers
which grew exponentially with problem size. However, a
similar degree of parallelism has been achieved by the
present authors® on a distributed array processor, the AMT
DAP 510, which operates in SIMD mode, with a processor
set that is only quadratic in the problem size. This enables
problems to be handled that would otherwise far outstrip
the capacity of the Connection Machine.

We note that these algorithms can equally well be applied
to measurements at points on the edges of a polyhedron,
with edge direction replacing surface normal.

Instead of using a small number of discrete measurcments,
edge matching generally involves the processing of a
substantial volume of grey level data, and the production
of a 214D sketch®’. Nevertheless, this form of input is
efficiently provided by the ISOR system® developed at
GEC Hirst Research Centre and currently being
implemented on the AMT DAP at Queen Mary College.

The purpose of this paper is to discuss parallel algorithms
for the validation of both face matching and edge matching
interpretations of visual data. This is required because the
interpretations are based only on simple geometric
constraints, with no guarantee that the object model
description is entirely consistent with the data.

THE VALIDATION METHOD

The problem is to validate an interpretation in which, in
the case of face matching, sensory data, expressed in terms
of position vectors
4 / / /
rp =&, Yis Zi):

measured to within some volume of error relative to the
sensor, and outward unit normals
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measured to within some cone of error, have been
provisionally assigned, for i = 1,2, ...,m, to particular faces
of a given polyhedral object model.

The models are described within a database, in terms of
the Cartesian coordinates of their vertices, together with
equations for the faces, of the form

ajx+bjy+cjz =d;,
ie.
W

where r is the position vector of a point in face j, in a
localised coordinate system, n; is the outrward unit normal,
d; is the perpendicular distance from the origin and
J=12,.n

An interpretation may be regarded as valid, only if it is
possible to find a rotation and translation of the given
object model that would result in each data point being
placed sufficiently accurately on the surface of the object,
and, in the case of visual rather than tactile data, with
every data point visible, not being obscured by any part of
the given object. The possibility of scaling an object model
to match the data is not considered in the algorithms
presented here.

The validation of an interpretation proceeds as follows:-

(i) For every feasible interpretation, establish the
location and orientation of the given object model
that is most compatible with the data;

(ii) Confirm that every data point is visible.

(iii) Confirm that every data point lies sufficiently close
to, and within the perimeter of, the object model
face to which it has been assigned;

In the case of edge matching, sensory data expressed in
terms of position vectors and edge direction vectors

t; = (a}, b, c})

have been provisionally assigned to particular edges. The
perpendicular vector p! from the origin replaces d!, but
the object model database and the validation method are
essentially the same.

LOCATION AND ORIENTATION OF THE
OBJECT MODEL

A rigid body rotation and translation may be expressed in
terms of a 3x3 orthogonal rotation matrix R, and a
translation vector ry,

ro = (X0, Yo, 20)s
so that
r}‘ — RI'J + Ty,
nj - an
and

d_,' —3 d} + erj.rg.

We have to determine R and ry in such a way that, if j
relates 1o the object model face to which the data point
with subscript i has been assigned,

Rn;

N
je=Ay

and
d; +Rnjrg = d}
ie.

d; =d} —nf.r.

The orthogonality condition RTR = I imposes 6 non-linear
constraints on the elements of R, and the application of the

method of constrained least squares to the residual vectors
Rn; — n; leads to the condition

R(S+L) =T,

where S and T are the 3x3 matrices whose elements are
defined as follows:-

Su=Xa}, Su=Xab, Si=Xaj
i=l

i=l i=1

321 =Sl29 Sn:Ebz, elc.

i=1

and

m m m
! i / o !
T11_ = Za,- aj, Tu = Za,—bj, T13 = Za,-cj.

i=1 i=1 i=1

Ty =Y blaj, Tn=Ybib;, et

i=1 i=]

and L is a symmetric matrix of Lagrangian multipliers.

On the left hand side of the equation the matrix § is also
symmetric, and it follows that RTT must be symmetric.
We thus have three further linear conditions on the
elements of R.

It has been demonstrated ° that the solution of these
equations may be expressed in terms of singular value
decomposition, with the best result selected from 4
possible rotations. However, the Newton-Raphson process
readily lends itself to a parallel implementation. A good
first approximation, obtained from the relationship

RS=T,

that applies when the data exactly fit the object model,
avoids the likelihood of convergence to a spurious
solution. In practice, the process converges to sufficient
accuracy after just one or two iterations.

The solution for ry is obtained much more easily, with the
method of least squares applied to the residuals
d; —d} +nj.r.

We note that Faugeras, Ayache and Faverjon, work rather
more compactly with the quaternions (d!,n;) and (dj,n;)to
achieve what appears to be an equivalent result, but



presumably their algorithm is implemented in sequential
form.

DATA VALIDATION

Having established the location and orientation of the
given object model that is most compatible with the data,
we may easily determine whether the locations of the data
points are consistent with the object model face equations,
but it remains to be verified that every data point lies
within the perimeter of the face to which it has been
assigned, and that it is not hidden from view by another
part of the object model.

In order to do this we consider the intersections with the
edges of a polygon, when a line is drawn from a given data
point to some external point. There will be an odd number
of intersections if the first point is inside the polygon, and
an even number of points if it is outside. For example, the
line joining Q to § in Figure 1 has 3 intersections with the
edges of the polygon.

Py

P

N

Figure 1. A Point within A Non-Convex Polygon

For the purpose of counting intersections, we choosc a
viewing plane that, for simplicity and efficiency, is
orthogonal to one of the coordinate axes, looking towards
the object, with the external point § at an infinite distance
to the right of the viewing planc (X5 — o). We then write
the equation of a line segment, such as that joining P, to
Py 1, in the form

AX +BY =C
where

A=Y — Y,

B = (X — Xg41)
and

C = (XY —Xin1 Vi),

If point Q has coordinates (Xg y,) in the viewing plane, the
line joining @ to § intersects the line segment if, and only
if, either

Yia>Yy>Y,

and

AXg +BYy < C,

in which case Q is to the left of the line segment, or
Y <Yg <Y,

and
AXp +BYg > C,

so that Q is to the right of the line segment, when looking
from P, 10 Pyy;.

Then, for a given data point to be visible from the position
of the sensor, it must lie in a face that is not directed away
from the sensor, and its projection on the viewing plane
must not fall within the perimeter of another face that is
nearer to the sensor.

These requirements lead to the conditions

Rﬂj.l’,‘ = d,, + an.l'g,

RI'I_,-.(I',' = l'g) = dj,

for all j such that the projection of data point i falls within
the perimeter of the projection of face j onto the viewing
plane.

The same visibility check applies when values of r] are
derived from edge matching data, but it then has to be
established that every data point is sufficiently close to the
edge segment to which it has been assigned. '

SIMD IMPLEMENTATION

There are three main directions in which parallelism may
be exploited in the validation processes described above:-

(i)  processes applied simultaneously to each data point;

(i) processes applied simultaneously with regard to
every object model face or edge;

(iii) processes applied simultaneously with regard to all
of the edges associated with a given model face.

Parallclism of type (i) occurs throughout, from the
summations required in determining the location and
orientation of the object model and checking against face
equations to the final data visibility check, whereas types
(11) and (iii) occur only during the visibility check.

The need for efficient calculation of the 3x3 matrices
involved in the Newton Raphson process clearly calls for
the exploitation of type (i) parallelism, which also leads to
substantial gains in the latter stages of validation. A
uniformity of approach is considered important, as this
avoids the need for the restructuring of the database that
would be necessitated by a shift of emphasis to fully
exploit type (ii) or (iii).

However, there is a substantial improvement in overall
performance when a limited restructuring of the object
model and data are undertaken at run time, with a view to
achicving m xm parallelism during the visibility check.



The first task in an SIMD implementation of the validation
process is to map the model against the data in accordance
with a given interpretation of the form

j =face(i), i=1,2,...,m.
so that
mapped_object(i,) = model(j,),

and to set the unused rows of the mapped object and data
matrices to zero. The initial rotation matrix, the solution
of the Newton Raphson equations and the translation
vector for best fit are then computed using standard DAP
Library subroutines. SHEP and SUM operations are used
to maximise parallelism in setting up the equations for the
Newton-Raphson process. The rotation matrix and the
translation vector are replicated before rotation and
translation of the object model.

Before proceeding with the validation of individual data
points, the x,y and z coordinates of the vertices associated
with given faces, originally stored sequentially in rows, are
moved into the columns of separate DAP matrices, and the
coordinates of the data points are replicated in columns
using a simple but effective binary algorithm. As a
consequence, when a given row of vertex coordinates is
replicated and related to a matrix of data coordinates, the
process simultaneously relates every data point to every
object model face, and mxn parallelism is thus achieved.
The organisation of the information within DAP matrices
at this stage is illustrated in Figure 2.
model face j

edge k )
. "-.model face j
|
replicated )
.. replicated
g
data point i

Figure 2. The Organisation of Information
within DAP Matrices

Transforming into viewing coordinates and initialising a
DAP logical matrix inside = FALSE. we proceed to
investigate intersections of the line joining each data point
to the external point S with successive edges of every face,
switching inside between .TRUE. and .FALSE. whenever
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an intersection occurs. It is thus rapidly established which
data points fall inside which faces when these are all
projected onto the viewing plane.

Then, with a fairly obvious nomenclature in DAP
FORTRAN:-

in_face = inside(face,)
.AND.(ABS(delta).LT.tolerance)

and

visible = (NOT.back_face)
AND. ANDCOLS(in_front.OR.(.NOT.inside))

where the real matrix delta and the logical matrices
back_face and in_front are the results from straightforward
parallel calculations, and the function ANDCOLS collates
results within a given row. Thus the process efficiently
determines which data points lie sufficiently near to the
face to which they have been assigned, and which if any
are not visible from the position of the sensor.

TEST RESULTS

The validation process has been applied successfully to an
L-shaped block with 8 faces, viewed as illustrated in
Figure 3, and with 8 data points, three of which are in fact
visible, at the centre of each face. The total processing
time required to determine the location and orientation of
the object and to validate the data is about 42 milliseconds.

Figure 3. A View of an L-Shaped Block.

Further tests on the validation process involved three
different views of a three-pin electric plug with 27 faces.
The first view of the plug, with 14 visible faces, is
illustrated in Figure 4. In the second view, looking
upwards with 12 visible faces, the pins were partially
obscured. The third view, was looking directly down onto
the pins, with 4 faces clearly visible and 5 more at an
oblique angle to the sensor.

The data for View 1 consisted of 14 data points at the
centre of each visible face, the one on the visible side of
the plugbeing obscured by the flange. Three back face
points were also included in the test data. There were 17
data points for View 2, including two in faces of the earth



Figure 4. - The Electric Plug (View 1)

pin that were obscured by the neutral pin and one in the
underside of the flange on the far side of the plug, that was
totally obscured by the rest of the plug. There were also
four back face data points for View 2. For View 3 there
were 12 data points, three in back faces but none otherwise
obscured.

The location and orientation of the plug were determined,
in each case, within about 26.5 milliseconds, and the back
face and obscured data points were identified by the
validation process in a further 12 milliseconds. This
brought the overall processing time, including that
required to generate a feasible interpretation, to about 90
milliseconds. A complete breakdown of the validation
processing times for the electric plug is given in Table 1.

processing time
(milliseconds)
Convert to DAP format 04
Map object against data 0.9
Compute S,T and initial R 59
Newton-Raphson for R 11.1
Rotate object 4.3
Compute U and v 1.6
Solve for ry 23
Translate object 13
Total to locate object 26.5
Replicated viewing coords 2.0
Check for inside face 8.2
Check for in face,
in front, in back face 2.0
Total to check data 12.2
Total to validate
interpretation 40.0

Table 1. Processing Times for the Electric Plug

Further tests were then made with simulated errors in the
spatial coordinates of the data points, and the surface
normal directions.
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It was found that, whereas coordinate errors of about 0.05
inches might simply result in the rejection of the offending
data points, with the electric plug being about 1.5 inches
across and viewed from a distance of about 5 inches,
errors of the order of 0.25 inches resulted in substantial
errors in rg, leading to the rejection of several valid points.
The orientation of the plug, and the run times for
validation, were not affected by errors in spatial
coordinates.

On the other hand, errors ranging from 0.1 to 0.2 in the
direction cosines of the surface normals led to errors in
both R and ry, with the subsequent rejection of several
valid points. Again, there was no change in run times,
because the errors were not sufficient to provoke further
iterations of the Newton Raphson process, in computing R.

A possible strategy for dealing with errors such as these
would be to recompute R and r, with the suspect points
removed and, if necessary, to check them again, against
the revised location and orientation of the object model.
When the position of the plug was recomputed with just
four of the data points from View 1, the maximum
discrepancy in the elements of R was about 0.02, the
majority were much smaller, and the maximum
discrepancy in the components of ro was 0.01.

CONCLUDING REMARKS

It has been established in this paper that the hypothesis,
prediction verification paradigm that is widely used in A.L
can be applied in SIMD parallel processing mode to the
problem of object recognition, within a very realistic time
scale.

Given object model descriptions stored in a database,
together with a small number of feasible interpretations, in
which sensory data points have been provisionally
assigned to the faces of a given object model on the basis
of simple geometric comparisons, we have shown how to
establish the location and orientation of the object model
that is most consistent with the data. We have also shown
how to confirm that every data point is visible and lies
sufficiently close to the face to which it has been assigned.

It may thus be established which of the interpretations is
most closely consistent with the data, and the location and
orientation of the object corresponding to the best
interpretation is then available for input to a control
system.

The overall timescale for interpretation and validation,
with obscured data points, back face data and errors in the
spatial coordinates of data points correctly identified, is
about 90 milliscconds for the electric that is used as an
excmplar.

We have been concerned herein with the static recognition
problem, with data derived from a snapshot in time, but in
principle the results might be applied to the dynamic
situation in which previous interpretations can be used to



narrow down the search for feasible interpretations, and
possibly speed up the validation process, with prior
knowledge of the location and orientation of certain
objects in the scene gained from previous runs of the
recognition system,

In this case, failure to arrive at a definite interpretation, at
the outset, is not likely to be a serious problem, for we may
distinguish between exploratory mode, in which we are
simply gathering data with potential feedback to the sensor
of requests for further information, and active mode when
a valid interpretation is required by the control system.

In the meantime, work is proceeding on the interpretation
of edge matching data, and the subsequent validation of
interpretations, to meet the demands of interfacing with the
parallel version of the ISOR system that was mentioned
in the introduction to this paper.
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