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This paper addresses 3-D hypothesis and mixed 3-D and
2-D verification as a means of obtaining high performance
closed loop model-matching. Performance includes the
following criteria: low computational expence; low failure
rate; and good localisation.
Hypotheses are based upon congruencies identified
between 3-D scene and model descriptions. Verification is
provided by quantitative evaluation of the 3-D match and
the identification of inconsistency (relient upon properties
of opaque objects).
Although the results are dependent upon the model
representation and the quality of the input (raw images),
the ability of a verification system to discriminate between
a correct and a wrong match has been demonstrated in a
number of experiments.
Furthermore, symmetries are identified by the system and
exploited to guide the search for correct matches.
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The architecture of the matcher/verification algorithm
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This paper describes the 3-D model matching algorithm
used within the TINA system at AIVRU Sheffield (an
early version of the TINA system is presented in Porrill et
al 1987). The adopted strategy (see figure 1) is to base
initial matching hypotheses on congruencies identified
between 3-D scene and model descriptions, and then to
employ a model-based verification strategy exploiting both
2-D image and 3-D scene descriptions to determine the
correctness of the hypotheses. Approaching the problem of
model matching in this fashion allows us to combine all
the good properties of 3-D scene and model matching
(primarily computational tractability and geometrical accu-
racy), with the robustness and completeness of methods
based upon the back-projection of the model.

The 3-D scene descriptions encountered in the current
TINA system are obtained through the processes of edge
and line-based binocular stereo and are presently restricted
to linear segments. The object models may also include
surface information (in the form of a surface tessellation).
However, matching hypotheses are restricted to those
linear features corresponding to discontinuities in the
model's surface.

1. Match Hypothesis

Matches are hypothesised using the SMM model matcher,
(an early version is presented in Pollard 1987). The SMM
algorithm exploits ideas from several sources: the use of a
partial pairwise geometrical relationships table to
represent object model and scene description from Grim-
son and Lozano-Perez (1984), the least squares computa-
tion of transformations by exploiting the quaternion
representation for rotations from Faugeras et al (1985),
and the use of focus features from Bolles et al (1983).
Given a model M - {m1....mi....mn} and a scene

S = [si....Sj....sm] the matching hypothesis strategy
proceeds as follows:

(1) A number of focus features are chosen from the
model F = (/!..../;..../„} where F czM.

(2) A number of groups G, c M of features from the
model of cardinality at least C are chosen; these
have two properties:

• Each group has a principle focus feature
PAGd (though it is allowed to include addi-
tional focus features).

• Each focus feature is the principle focus
feature for at least one group.

These groups form the basis for hypothesis.
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(3)

(4)

Potential matches for each of the principle focus
features of each group are selected and represented
as the pair (p^Gj),^).

For members of each group, consistent matches (in
terms of a number of pairwise geometrical relation-
ships) are sought in the context of each principle
focus feature match, to form a set of matched
groups. For example the matched focus feature

gives rise to the matched group of pairs
where m; e G; and

(5)

(6)

Each matched group is searched for maximal mutu-
ally consistent (in terms of the pairwise geometrical
relationships) cliques of cardinality at least C, each
of which can be thought of as an implicit transfor-
mation.

Each mutually consistent clique is further con-
strained by insisting that the explicit transformation
they represent (recovered using the method
described by Faugeras et al (1985)) includes each of
the constituent matches.

(7) Hypothetical matched groups are ranked on the
basis of their cardinality and total match length. The
matched group with highest rank provides the best
hypothetical match.

The relationships between pairs of lines from scene or
model used here are:

• orientation differences.

• minimum separations between (extended) lines.

• distance to the beginning and end of each physical
line with respect to the point of minimum separation
and in the direction of the line (only applicable for
non-parallel lines).

1.1. Lazy Evaluation

The advantage of the above matching strategy, in addition
to the fact that exhaustive global search is avoided, is that
it can be subject to lazy evaluation at stages 4, 5 and 6.
Not all matched groups require examination at each of
these stages. Consider the use of a conservative evalua-
tion function to provide an upper bound upon the match
quality at each stage. If at stage 5 (the identification of
maximal cliques within each matched group of line seg-
ments), for example, we rank matched groups according
to this bound, then it is possible to halt the max-clique
search if a mutually consistent clique is found with a
value greater than the bound of the remaining match
groups. If subsequently the best hypothesis's evaluation
reduces below this bound (or is rejected by the
verification process) then the max-clique search will
recommence.

2. Model Driven Verification

As a precursor to the verification process, the clique of
consistent matches of the current hypothesis is extended.
Given our initial estimate of the transformation it is possi-

ble to examine the set of potential matches to identify
those that are consistent with it. The best new transfor-
mation, in the least squares sense, can be computed from
the current set of candidate matches. The process of esti-
mation and consistency checking continues until the set of
consistent matches achieves saturation.

2.1. Determining Visibility

The first step in the verification procedure is visibility
prediction, to derive for every model line its a priori visi-
bility. Each line in the model is segmented into sublines
(ordered along their length) which are appended with
predicted visibility (often a line includes only a single
subline with a single visibility label). The level of sophis-
tication and completeness of this scheme depends upon
the level of surface information, and topological comple-
tion of the model representation. However even in situa-
tions where incomplete models with little or no surface
information are used some visibility prediction is still pos-
sible. Three levels of surface description are considered
here (illustrated in figure 2):

• full explicit surface descriptions

• implicit surface description from full wire-frame
description

• no surface description

Comparing labeling in the three visibility predictors
figure 2

predictor 1

surface-information

line predicted
to be visible

line predicted
to be invisible

predictor 2

incomplete wire-frame

. line predicted
to be (partly)
invisible

line with
— unpredicted

visibility

predictor 3

complete wireframe

line predicted
to be visible

line predicted
to be (partly)
invisible

line with
unprcdicted
visibility
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The process of prediction is straightforward, if laborious,
when explicit surface representations is available. If this is
not the case, implicit surface knowledge can be used; for
example, if model and/or scene lines intersect in their pro-
jection on an image plane, either both share a common
depth or one is situated behind the other in which case we
can make certain assumptions concerning visibility.

Given complete wire-frame descriptions the following
strategy can be adopted.

(1) identify external boundaries of the object with
respect to current viewpoint (these must be visible).

(2) the point which is closest to the camera's optic cen-
tre is also visible.

(3) when a line that has been labeled partly-visible is
occluded by an intersecting line, the visibility of the
former is propagated (locally) to the latter.

(4) when a line that has been labeled visible meets a
vertex, the purely local examination of the
hypothesised surfaces at the vertex enables visibility
to be propagated to some incident lines. This pro-
cess identifies the set of lines that are visible what-
ever the surface distribution of an object, given its
wire-frame representation.

2.2. Line Based Verification

Following their projection into the left and right image
planes a series of line searching process attempts to locate
the predicted model subline segments. The various search
process place initial emphasis on the left image.

According to the results of visibility prediction and line
search, sublines from the model are classified according to
one of the following six categories:

(1) lines that were expected to be visible and
have indeed been matched.

(2) lines that were expected to be visible but have
not been matched.

(3) lines that were expected to be invisible and
have not been matched.

(4) lines that were expected to be invisible but
have been matched.

(5) lines whose visibility has not been predicted
and have been matched.

(6) lines whose visibility has not been predicted
and have not been matched.

In the cases where lines that are not predicted as invisible
have been matched (ie cases 1 and 5) the length of the
projection of the matched line in the left image is added
to the partial sum of the length of visible lines.
If the measured length of the scene line is considerably

greater than that of the model line, (and if the informa-
tions on length, in the model representation are reliable)
then this is considered a geometrical inconsistency.

In the case of lines that were expected to be invisible but
have been matched (ie 4), false alarms are avoided by

also searching for the line in the right image. If this
search is successful, then there is strong evidence that the
current transformation was computed on the basis of an
implausible matching between model and scene lines.
Such a situation is illustrated in figure 3:

figure 3
The detection of inconsistencies

left image mndel of a hox

showing a cube with a block missing transformadonlprojection of wireframe

left image
cooniinate frame

model of a box

detail from the subline structure

superimposition of
model and scene
according to
hypothetised transformation

: model lines
expected to be
invisible

This view illustrates
the 2D match of
T(Ml)withsl
T(M2) with s2
T(M3) with s3

In the figure, (Afj M2M3} is a set of lines from the model
and {S^S^} a s e t °f l i n e s fr°m the 3-D scene such that
{(Af1,S1),(Af2,S2)>(M3,S3)} is a clique of mutually consistent
lines. Now supposing that the surface representation of the
model is known, it can be derived that, should the com-
puted transformation T be correct, T(Afj), T(M^), T(Af3)
should be occluded. So, the 3-D match is inconsistent with
the knowledge of surfaces because the transformation it
yields matches Mx with 51( M2 with S2, Af3 with S3, yet
from the position of the camera's optic centre relative to
the model, M1M2M3 should be occluded by Ai.A4.A5.

If explicit surface information is not available, the same
idea can be exploited: In figure 3, the subline structure of
lines Mlt M2 and M3 is (^ n ) , (|i21) H22), (M.31, M32) respec-
tively. Visibility prediction using wire-frame representa-
tion states that two neighbouring sublines cannot be
matched simultaneously. An inconsistency is revealed by
the fact that ji2i, H22 have both been matched successfully.

If however the match in the right image is unsuccessful,
then it is probable that the matching of the projected



model line in the left image is coincidental and therefore
the match is not doubted by this information. It is possible
of course that this approach is over conservative for this
particular line and indeed the 2-D match in the left image
reflected the matching of 3-D features but that owing to
poor quality in the right image the projection of the model
line on the right image is unsuccessful. In such cases it is
likely that other inappropriate matches also exist and at
least one of these will be able to doubt the currently
hypothesised transformation.

In the case of (2)or(6), a more thorough line search is
undertaken, which if successful will result in the relabel-
ling of the line. If this process also proves to be unsuc-
cessful the projection of the line into the right image is
also considered.

(v) If sufficient information has not already been
obtained to falsify the currently hypothesised
matched, The verification process continues by
searching for potential inconsistencies with scene
data. The inspection of those scene lines that pro-
ject in 3-D within the hypothesised model can be
used to reveal wrong 3-D match hypotheses. This
point is illustrated in figure 4.

Exploiting object opacityfigure 4

left image

showing a cube with a block missing transformation/projection of wireframe

si

Al

surface representation

superimposition of
model and scene
according to 3D match

: model lines
expected to be
invisible

This view illustrates
the expected occlusion
of
S4,s5,s6
by
A1.A4.A5

the "obstruction"
ofs7byT(M10)
and
s6 by T(M9).

High confidence scene descriptions should lie in
front of the hypothesised model and not behind it.
In a similar fashion the absence of match for a line

predicted visible can be justified in this way (that is;
if a high confidence scene description does lie in
front of it then there is a good chance of an occlud-
ing object). If no surface information is available, a
similar reasoning can be held. In figure 4, 51,..ys10

be a set of 2-D scene lines corresponding to 3-D
lines Si,..£10. The matcher has matched Si,..JS^ to
MX,..MA- Let T be the transformation associated
with the 3-D match, T(Mi),..,T(A/4) are matched in
2-D to Si,..f4. The study of the intersection of s6

and T(Af9), 57 and T(M10) contravenes the 3-D
match.

2.3. Quantitative evaluation of the 3-D match

So far, we have been investigating ways by which we can
derive inconsistencies when the 3-D match is wrong.
However, the absence of such information does not imply
that the 3-D match is correct, so we need to take into
account the quantitative results of the 2-D matches.

To this end, we can compute various criteria that give
some idea of the quality of the match. We will express
the criteria in terms of the ratio between a measured quan-
tity (number of lines matched in 2-D, length of these lines
in 2-D or 3-D) and the corresponding predicted quantity
(derived from visibility prediction). We have investigated
the following criteria

criterion 1 =
Nmatched

Ntot

. . „ matched vis length
criterion 2 = =—=—«—

max_vis_length

criterion 3 =
matched_yis_length

max_yis_unobstructed_length

. . . matched vis length
criterion 4 = ~ .- , ^ ,

max_not_invts_length

where

Nmatched is the number of 2-D matched lines.

Ntot is the total number of lines expected to be visi-
ble.

matched_vis_length is the sum of the lengths of all
lines in the image matched in 2-D to the projection
of a line from the model.

max_vis_length is the sum of the length of all pro-
jected model lines expected to be matched in 2-D.

max_vis_unobstructed_length is the sum of the
lengths of all projected model lines expected to be
matched in 2-D accounting for occlusions.

max_not_invis_length is an upper bound of the
optimal length of model lines matched in the image.

The strategy preferred is to insist both criterion 2 or 4
(depending upon the availability of surface information) to
be above a lower threshold and criterion 3 to be above a
higher threshold.
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The 3-D match is validated if the above requirement is
met and if no geometrical inconsistency has been
identified.

If the 3-D match is rejected by the verification process,
the latter invokes the matcher which attempts to compute
another transformation. The process terminates when the
verification process validates a match or when the matcher
is unable to compute a (further) transformation.

3. Learning about Partial Symmetries

When a hypothesis generated by the 3-D matcher has
been rejected by the verifier, the list of lines from which
the assumed transformation is computed can provide use-
ful information.

M defines the relationship "are consistent matches within
the transformation" so that M(scene_line, modeljine) can
be read: in the transformation, scene_line is matched to
modeljine. Let scene and model lines be indexed as
scene(k) and model(l) for k € S and 1 e M.

The transformation can be described by the following
relationship:

There is a function T defined from V -> M and a set V, (
V c S) such that for all k e V :

M(scene(k),model(T(k)))

Let T \ V , M' be parameters associated with another
transformation. For all k in V ,
M'(scene(k),moder(T'(k))). Hence we can define a rela-
tionship R by

R(T(k),T'(k)) <-> M(scene(k),niodel(T(k))) and
M'(scene(k),model'(T'(k))).

This means that the one set of scene lines {scene(k)}7 for
k £ V p ^ ' , embodies the same configuration as
{model(T(k))} or {model'(T'(k))}. If model = model',
(the model used is the same in both transformations), then
R unveils a symmetry within the model. If modetemodel',
then R unveils a similarity between the two models. This
property is only interesting if the cardinality of V ^ V is
not to small (what would be the point in using the fact
that model and model' both have a right angle).

This can be used in two modes:

• When in the process of building a clique of mutually
consistent lines the result is a subset of {model{T(k))} for
k e V ^ V , the model matcher could be asked to extend
the clique so as to disambiguate the configuration, in other
words, to find a line model(T(x)) with x not in V ^ V to
complete the clique.

• An other way of looking at it would be to say: if the

3-D match of the scene-based on the matching of
{scene(k)} to {model(T(k))} is rejected by the verifier
then try the 3-D matching of {scene(k)} to {model(T(k))}.

4. Experiments

Experiments were carried out using an "L" shaped object
as a model, and stereoscopic images containing a
"widget", Lego house or the "L". These images
represented the object seen from various viewpoints and
lit in various conditions. Some images included obstruct-
ing objects. The results of experiments were displayed by
superimposing on the raw images the projected model
lines, the colour of which indicated their category (1 to 6).
Scene lines that were interpreted as occlusions or as
geometrical inconsistencies were also outlined. In the
figures presented below, dotted lines represent scene lines
and plain lines represent model lines.

Image showing a Lego house:

1 _

' " ' ' *

1

1 , '

' ' '

')'(•'•

I I'' /

Image showing the "L" partly occluded by an object:

The 3-D matcher never succeeded in matching the widget
to the "L".

Some settings of the matcher's parameters allowed the
matcher to match the house to the "L". All matches were
later discarded by the verification process, as the value of
criterion 2 was never more than 10 %. In most cases the
rejection was corroborated by the detection of geometrical
inconsistencies.

In the figure below, scene lines a, b and c were detected
behind model lines X,Y and Z respectively, which dis-
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cards the hypothesised 3-D match. The value of criterion
2 measured in this picture is 4 %.

The "L" being a highly symmetrical object, in images
where it appeared the matcher often yielded matches that
corresponded to location errors. Such an error can be
seen in the following picture. Here the 3-D match is dis-
carded as model line M, which was predicted invisible,
has been matched successfully in the left and right
images. The value of criterion 2 is 24 %.

In 5 % of the cases it also validated wrong matches (a
wrong transformation was computed on the right object)
as the quantitative assessment was considered high enough
and no geometrical inconsistencies were identified.

In many cases, matches were rejected by the verification
system on grounds of geometrical inconsistency.
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