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A high level representation of polyhedral scenes in
terms of planes and corresponding coplanar sets of 3D
line segments is used to develop a method for identifying
categories of objects and features in the scenes. Plane
intersections are used to establish links between all the
planes that correspond to the visible surface of a partic-
ular object. The object's shape (as far as it is known)
is then reconstructed to provide its description and also
constraints on its possible interpretations. At the same
time the segment distribution within each plane is ana-
lyzed to search for any characteristic patterns that may
help identification. In this way we use the topology of a
3D shape or a 2D segment pattern to identify a category
of an object (a desk) or a feature (a window), rather that
using a metric description of particular object or feature
to find its instance(s) in the scene.

1 Introduction

The task of object recognition and scene interpretation is
a challenging one. It embraces a large number of capabil-
ities and methods ranging from simple template match-
ing to the use of mathematical logic and extensive prior
knowledge of the relevant domain in interpretation of pre-
viously unseen objects and scenes. The choice of meth-
ods and techniques used in a particular case depends very
much on the nature of the task and on the available data.

The approach that we describe in this paper (COM-
PACT) is no exception. As part of the ESPRIT project
P940 - Depth and motion analysis, we are develop-
ing recognition capabilities for a mobile robot operating
within a man-made (indoor) environment (i.e. mostly
polyhedral scenes) and also for a robot arm manipulat-
ing simple manufactured parts (whose surfaces comprise
planes and simple quadrics). The input for the higher
level processing modules is a set of 3D straight line seg-
ments produced by the three camera stereo vision system
developed at INRIA (Rocquencourt, France) [1] for the
project.

The first stage of COMPACT creates an intermedi-
ate representation of the image data in terms of planes,
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spheres, cones and cylinders. While these surface types
are clearly sufficient to describe most indoor scenes, they
also provide adequate description for many classes of
manufactured objects.

A very strong incentive for creating a surface-based
representation comes not only from the human visual ex-
perience but also from our previous choice of the 3D seg-
ment representation. Here, as we can see on the example
shown in Figure 8, many of the vertices or junctions are
missing as no special effort is made to find them in im-
ages and to preserve them during the stereo matching
process. Hence the popular approach of "interpretation
of line drawings" (see e.g. [2, 3, 4]) would be not very
useful. One property however, that the disconnected seg-
ments corresponding e.g. to the windows in the scene still
possess (and that can be extracted from the data) is their
planarity. Our methods for extracting planes and other
simple surfaces from line segment data have already been
described elsewhere [5, 6, 7, 8].

The following stage, to which the rest of the paper
is devoted, concerns the two aspects of recognition and
interpretation that we can investigate in parallel using
our representation - a 3D analysis of object shapes using
the extracted surfaces [9] and a 2D analysis of surface
features using the line segment distribution within each
surface. Here we shall restrict our discussion to polyhe-
dral objects and scenes for which we can already present
some results.

2 Reconstruction of objects and
spaces

A set of surfaces extracted from the image data consti-
tutes a surface-based representation of objects or scenes
that is clearly suitable for the recognition of known ob-
jects or scenes by direct matching to geometric models
stored in the data base using any of the existing meth-
ods (e.g. [10, 11]). The small number of image features
involved here reduces the time needed for matching.

In this paper, however, we investigate a different route
to scene interpretation - via construction of 3D shapes
from the available surfaces (3D scene segmentation) fol-
lowed by a labelling stage in which geometric and topo-
logical relations between objects and other constraints are
used to identify the shapes as object categories (rather
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Figure 1: Connectivity of box surfaces
(the nodes correspond to planes P and edges E)
a) an object-box
b) a room-box

than particular instances) by assigning labels to them.
Our motivation is, having considered a range of ap-

plications corresponding to different domains and tasks
(from object recognition to navigation), to create an ap-
plication neutral representation in terms of 3D object-
and space-primitives based on topology rather than met-
ric description.

2.1 Basic ideas

We shall first consider the reconstruction of objects and
spaces (in what is basically the surface boundary repre-
sentation) in the domain of simple rectangular blocks or
boxes. In a typical scene several Object-boxes are con-
tained inside a Room-box.

The main structural component of a box will be an
edge - an intersection between two visible planes. The
simplest Object-boxes are obviously constructed out of
convex edges and Rooms out of concave edges.

A box is constructed using the connectivity of its edges
and planes which has been made explicit in our data
structure. Starting with any edge we find the planes as-
sociated with it and in each plane we find other edges etc.
This can be represented by a graph as shown in Figure
1. The task of constructing an Object or a Room can
be then described as the task of finding maximal com-
plete subgraphs of a graph containing all the planes in
the scene.

Although the use of metric quantities like perpendic-
ularity may provide convenient constraints in some do-
mains or applications, they are not essential in this
mainly topological representation and our approach is
easily extended to general polyhedral scenes.

Figure 2: Complex scenes
a) a box in a room
b) a room with an open door

2.2 An Object in a Room

We shall now use this, the simplest nontrivial scene, to
explain the basic ior-building procedure that will be later
modified to cope with scenes of increasing complexity and
eventually with the general case of composite objects and
spaces.

An Object in a Room (Figure 2a) will give rise to some
concave joins between the Object faces and the Room
floor or walls that should not be confused with the Room
constituent edges. Hence the feoz-building procedure will
involve the following steps :

1. Label all edges as convex or concave.

2. Use the convex edges to construct the Object.

3. Label any concave edge that is associated with the
Object as a join.

4. Use the concave edges that are not joins to construct
the Room.

2.3 Complex scenes
A group of desks in an office is an everyday example
of a scene where several object-boxes may share a plane.
Our basic procedure has to be modified to distinguish
between different physical surfaces (i.e. desk-tops) in the
same plane. Here we make use of the relative proximity of
edges without actually requiring the existence of 3-edge
vertices.

Another example is a room with an open door (Figure
2b) seen as a lamina (rather than a box). The door plane,
unlike the other vertical planes (walls), usually divides
the scene into two halfspaces, both of which are (at least
in part) visible to the camera. This can be used to iden-
tify it as being different from the walls. An alternative
method which uses the relative position of the door-wall
intersection with respect to the wall-wall intersections is
currently being tested.

2.4 Composite Objects
In order to extend our method to composite objects (in
our case unions of several convex parts created in the
spirit of the constructive solid geometry representation)



Figure 3: Composite object - a staircase
a) the whole object
b) one of the five convex parts

we have to adopt an operational definition of a single
object. As it stands now, our method will identify as a
box every 6ox-like shape in the scene - be it a simple object
or a convex part of a composite object. Such elementary
box-paxts have to be merged to create meaningful single
objects.

The operational definition necessarily depends on the
application domain. Our box-world environment is rela-
tively simple and so one might expect a relatively simple
definition. On the other hand our surface representation
does not offer the usual clues to the integrity (or other-
wise) of an object - e.g. colour or texture. At this stage
we also assume no higher level knowledge regarding the
possible function of an object to guide us.

Let us consider a pair of box-parts. First we require
that the two box-parts have a common plane. Then we
look for an evidence that they are actually joined to-
gether. For example, the staircase in Figure 3a is first
reconstructed as a set of five boxes corresponding to in-
dividual stairs (Figure 3b). Then the pairs of adjacent
boxes are labelled as ccmneded becaused they have a com-
mon plane and also a visible (concave) join. Inevitably
all the boxes are identified as parts of the same object
using these two requirements.

The integrity of the common planar surface itself may
also indicate that parts are connected (at present we as-
sume that all surfaces are opaque). Preliminary tests
with different synthetic objects and scenes produced a
variety of indicators and rules which are currently being
put on a sounder theoretical basis.

2.5 Shape interpretation

While some objects have a simple box-like shape (e.g. a
filing cabinet) and their identification requires some addi-
tional information, in some cases (a desk) the shape alone
may provide a constraint sufficient for identification.

From the set of segments representing the desk in Fig-
ure 4 our program extracts two boxes : box A comprising
planes P1,P2 and P3 and box B planes P3 and P4. It is
important to note that these boxes, because of the way
they are constructed, cannot be simply identified with
the usual block-parts we may use to build such a shape.
Hence our shape description will differ from the usual
schemes (a horizontal block supported by two upright
ones, see e.g. [12]). All we can say is, that the two boxes

Figure 4: A desk

share a plane (P3) and that the planes PI and P4 are
parallel; furthermore box B is in a way "contained" by
box A. While this does not amount to a recognizable
description of a desk (or an arch), it may enable us to
choose one from a small number of interpretations.

Here we adopt an approach similar to that in Min-
sky's frame representation [13]. We consider several ba-
sic types of scene (e.g. an office) and in each scene we
expect to find a small number of objects and features
(desk, chair, wall, window ...). When interpreting a par-
ticular 3D shape, we need not consider the domain of all
possible (polyhedral) objects, only a few.

Furthermore, some objects may be expected to pos-
sess, apart from a particular shape, a characteristic sur-
face pattern of lines - e.g. indicating a set of drawers in
a desk. In such a case the interpretation module can ini-
tiate a relevant analysis of the edge segment distribution
to search for such a pattern (see next section).

2.6 A simple example

While the synthetic staircase in Figure 3 nicely illustrates
our basic method of object reconstruction, the real data
in Figure 5 emphasizes the importance of making explicit
the planes and their intersections (rather than vertices)
that is fundamental to our approach. The set of 3D seg-
ments from ITMI (Grenoble, France) that represents the
polyhedral object in the scene (electrical switch) was ex-
tracted from a series of images taken by a single camera
mounted on a robot arm moving around the object.

Although the data is quite sparse, we succeeded in
identifying five planes and establishing their connectivity.
Our (incomplete) knowledge of the shape, represented in
Figure 5d, would be adequate for simple classification
and grasping tasks. (To visualize our results, we find the
smallest rectangular block that contains all the segments
and use the identified planes to cut away the parts that
are outside the object. Hence we are always dealing with
a finite volume. The back and bottom faces in Figure 5d
are parts of the block surface.)
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Figure 5: ITMI polygonal object
a) one of the series of images
b) side view of the 3D segments
c) top view
d) reconstructed shape

3 Planar segment patterns

3.1 The pattern primitive

In the 3D shape reconstruction process we used only the
knowledge of the plane parameters and the plane seg-
ments that are part of the plane intersections. Very of-
ten, however, the other segments in the plane can pro-
vide valuable clues as to the nature of the corresponding
surface and hence of the relevant object or space. For
example the front face of a box-like object may contain a
pattern corresponding to a set of drawers thus identifying
the object as a filing cabinet; a window-like pattern may
identify a wall in a room.

Our approach to such pattern analysis is again deter-
mined by the basic recognition of the fact that the line
segment data available in practice is usually far from per-
fect, e.g. we expect many of the line junctions to be
missing (e.g. Figure 8).

Although the obvious representation primitive for
many characteristic patterns in man-made environments
(e.g. a window) seems to be a rectangle, the missing line
junctions can cause serious problems in the extraction of
such primitives. So instead we chose a straight ROW of
parallel segments (Figure 6) that are, like the rungs of a
ladder, equal in length and perpendicular to the ladder
axis. The distances between the adjacent segments (i.e.
gaps), however, need not be all equal.

a)

c)

Ml
b)

d)

Figure 6: Types of rows and patterns
a) FRAME
b) BOOKS and DRAWERS
c) TILES
d) WINDOW

3.2 The pattern analysis

The whole process of pattern identification and interpre-
tation can be separated into three stages. Firstly we find
all the rows in the segment data to create the intermedi-
ate representation, and also compute both the individual
row properties and the row correlations.

Then we group these primitives to create certain dis-
tinctive patterns or topological features like WINDOW
(Figure 6). As the segment data is rather sparse, we de-
cided against the statistical approach to texture analysis
as advocated e.g. by Vilnrotter [14].

Finally we have to interpret these patterns in terms of
real object features. This process is very much domain
dependent and we have to use sets of a priori probabilities
linking the physical and the topological features. As an
example a window in the scene is most likely to give rise
to the pattern WINDOW, but also TILES or FRAME
(Figure 6) are possible.

3.3 Row properties

For every row we can determine its individual properties
like its orientation (given by that of the segments), size
(number of segments), gnum (number of different gap
widths) rank (the largest number of equal gaps), as well
as a regularity index RI (which is somewhat similar to
entropy in physics) defined as :

R I =
size — 2 size — 1'

so that its values range from 1.0 (all gaps the same
size) to 0.0 (all gaps different sizes).
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Figure 7: Two overlapping rows

We also make explicit the relative orientation for each
pair of rows if they are parallel or perpendicular. Such
correlations are used to find groups of rows likely to be-
long to the same topological feature. Here we require
two rows not only to be perpendicular but also to over-
lap. The definition of row overlap is given in Appendix
A and Figure 7.

Using a whole set of individual properties and pair
correlations we at present define and distinguish sev-
eral characteristic row types : FRAME, DRAWERS,
BOOKS, WINDOWand TILES (Appendix B and Figure
6). As the names suggest, these row types are expected
to indicate presence of real features like windows, tile
patterns or rows of books.

3.4 Topological patterns

The next step is to group together rows likely to belong
to the same topological pattern. We make an observation
that two perpendicular rows belong to the same pattern
if they overlap. We call such rows complementary. Start-
ing with a row R of a particular type T we proceed to
include all rows complementary to R and every row of the
type T parallel with R that shares with R at least one
complementary row. This procedure establishes just the
right degree of connectivity for sensible grouping. The
resultant pattern is defined to be of the type T.

This method of pattern analysis was applied to the
set of 3D segments representing an office scene at INRIA
shown in Figure 8a. In Figure 8b we show the subset of
segments identified with the feature WINDOW.

3.5 Feature interpretation

As mentioned earlier, we do not expect simple one-to-one
correspondences between the topological patterns and
the physical features; a window in the scene may give
rise to a FRAME, a WINDOW or even a TILES pat-
tern and on the other hand a FRAME can correspond to
anything from a doorway to a notice on the wall.

Each type of scene will require an interface that, us-
ing some domain specific data, will assign interpretation

X

/ / / •

a)

iF.;fiili

b)

Figure 8: INRIA office scene
a) top and front view of the 3D segments
b) the WINDOW pattern

probabilities to each segment pattern. Hence, for each
characteristic pattern found in the segment data we get,
as the result of this interpretation stage, a set or possible
interpretations with the corresponding probabilities.

4 Summary

We have outlined a method for object recognition and
scene interpretation which is strongly surface-based. Sur-
face primitives are extracted from the 3D line segments
directly without referring to the surface contours. They
are combined to form objects in 3D using connectivity
via surface intersections that are made explicit by the
method, again without the necessity to detect or recon-
struct corners and vertices.

Within each surface (plane) we search for characteris-
tic patterns of line segments that may help to identify
the object or feature. The results obtained so far justify
a certain amount of optimism, although more extensive
tests on real complex scenes are still required.

At present we are investigating the topological descrip-
tions of the 3D structures suitable for recognition (e.g.
desk-like or staircase-like) and also the combined use of
the 3D shape and the surface patterns in object and scene
interpretation.
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A The row overlap

In order to define an overlap of two perpendicular rows
we represent each row by a rectangle specified by the
row's centre point C, its orientation and its length 2/ and
width 2w as indicated in Figure 7. Two rows are deemed
to overlap if their corresponding rectangles overlap. Let
d be the vector connecting the two rectangle centres and
let di and dw be its two components along the length and
width of row 1. The absolute overlap condition is :

di < li + w2

Maximum overlap is achieved when :

d] + w-2 < k

dw + wi < /2

In practice we use the following simpler condition :

B The characteristic row types

Pairs of perpendicular overlapping rows with size = 2
form a separate class. They are simple rectangles and in
our analysis they are given the label FRAME.

Otherwise we aim to characterize only the larger
{size > 4) regular (rank > 3) rows. Those perpendic-
ular to other large (rank > 2) rows suggest "extended"
features and are labelled as TILES if they are highly reg-
ular (RI > RIth) and as WINDOW otherwise. RIth is a
threshold value that depends on the row size (the maxi-
mum for WINDOW type).

Rows perpendicular to smaller or less regular rows
(rank = 1) are in the "linear" category : the regular ones
(RI > 0.3) are DRAWERS and the large (size > 10) less
regular ones (RI < 0.3) are labelled as BOOKS.

These assignments are specific to the "office scene" do-
main and preliminary.
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