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Abstract

Much published work on contextual image classification
is based on an assumption of class-conditional indepen-
dence (CCI) of the measurement data - equivalent to as-
suming that an ideal classifier will recover the underlying
true scene, with errors evenly and randomly distributed
as white noise. This paper proposes a simple alternative
model which, it is argued, is more realistic in many appli-
cations and upon which useful theory can still be built.
The new model is then used to investigate the effect on
the accuracy of an object classifier which makes the CCI
assumption in a domain where it is not valid.

1 INTRODUCTION

Consider the task of identifying forest cover in satellite
or aerial imagery, based on per-pixel spectral character-
istics. Suppose that some form of maximum a posteriori
(MAP) per-pixel classifier has been trained on samples
from the classes “forest” and “non forest”. What form
of results might one realistically expect to obtain? Fig-
ure 1 (a) shows a true scene, with shading indicating for-
est. Would the reader agree that the classification shown
in (c) is far more realistic than that in (b)? Image (b) is
of the type beloved of workers in image restoration, the
errors being conveniently distributed in a random, un-
correlated fashion. In (c) the errors show a large degree
of spatial “clumping”, analogous to burst errors over a
communications link. It is not difficult to imagine how
such clumping of errors occurs. “Non-forest” will con-
sist of a large number of sub-classes, some of which— eg
parks and perhaps large gardens—will be more similar to
forests than others such as lakes and buildings. This will
be less true for the class of “forest”, but even here there
may for example be large burnt areas which would be
more difficult to identify. As these subclasses will them-
selves be spatially correlated (clumped), then so will the
classifier show clumping in the accuracy of its results.
One might contend that this is simply an issue of
definition—that burnt patches are not forest at all, but
this would not be a map maker’s view. Classification is
definition. It is widely appreciated in remote sensing that
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when designing a land use study, care must be taken to
avoid specifying classes which are in reality a mixture of
many underlying sub classes[10]. This advice is usually
proffered in connection with the unimodality assumption
made by commonly used pixel classifiers (eg Gaussian
maximum liklihood). In practice however, one may have
no choice but to use compounded data — ground truth
is costly to collect and one may be forced to use training
data which was perhaps collected for another purpose. In-
deed, providing an appropriate non-parametric classifier
is used (a nearest neighbour method for example), then
this issue need have no effect on the accuracy of the per-
pixel classification. However, as this paper will demon-
strate, the spatial correlaiion of the sub-classes becomes
highly significant when one wishes to use some context
exploiting scheme to improve upon the initial classifica-
tion; at a purely intuitive level we can see that it would
be of no use consulting the immediate neighbours around
the point marked “X” in figure 1 (c) in order to correct
the misclassification there!

This paper investigates the effect of correlated sub-
classes on contextual classifiers which ignore the phe-
nomenon through their assumption of CCI on the mea-
surement data. After explicitly stating the image model
upon which contextual classifiers traditionally rest, a new
model will be formulated which acknowledges the exis-
tence of underlying sub classes and their correlation. This
model will then be imposed upon an existing object clas-
sifying scheme to derive insight into the degradation of
performance that the inappropriate CCI assumption en-
genders.

2 IMAGE MODELS

2.1 The existing model

Many image classification schemes which aim to utilise
contextual information [1,2,4,5,8,12,13,14] are implicitly
or explicitly based on the following set of assumptions:

1. Associated with each pixel i € I is its class
Y; € 6,0={1..K}

2. Pixel classes are locally correlated; it is often as-
sumed that this correlation is positive and has no
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directional qualities, ie that
i € neighbours(k) =
PYi=b|Y =j) > P(Yi=k]|Y*#£))

3. Associated with each pixel i is some (probably mul-
tivariate) measurement data X* € Q.

4, Measurement data is class conditionally indepen-
dent, ie

p(X* | Y, X% = p(X| YY), Vikel
and thus

p(X' X* | Y, Y9) = p(X* | YY) p(X* | YY)

It is this latter assumption which leads to the prediction
that the errors from a MAP classifier will be spatially
(2) True scene uncorrelated, and with which this paper takes issue.

Many authors have recognized the shortcomings of this
model (although Haralick[4] maintains that the CCI as-
sumption holds true “in virtually all signal and image
processing situations”). Various modifications have been
proposed. Kalayeh and Landgrebe([6] recognize that cor-
relation may be introduced by the target and model the
effect with a causal Markov field on the observation data.
Mohn et al[11] carry out a detailed and extensive simu-
lation study of a number of context exploiting schemes
using simulated scenes with data generated , by a model
which assumes that the class-conditional correlation de-
creases exponentially with the distance between target
points.

The approach in this paper however is simpler and per-
haps more intuitive.

2.2 Formulation of the new model

We formally recognize the existence of subclasses and
refer to them as intrinsic classes. The classes which
are of actual interest to a given study we call super
classes. Of course, it is only for the latter that train-
ing data/distributions will be directly available, though
section 4.3 suggests a means of discovering these for the
former also. Following is a formal statement of the pro-
posed model.

rw

1. Associated with each pixel 7 € I is its intrinsic class
Z', Z'€ 3,2 ={1..M}.

*

2. Associated with each pixel i € I is its super class
Yi, Yic 6={1.K}

3. There exists a transition matrix T = P(Z | Y) which
provides a probabilistic mapping from super class to
intrinsic class.
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4. Intrinsic classes are locally spatially correlated. It
can often be assumed that this correlation is positive
and has no directional qualities, thus

(a) True scene with correlated noise

Figure 1: y <
i € neighbours(k) =

P(Zi=m|Z*=m)>P(Z'=m|2* £ m)

In fact this will be taken to imply that intrinsic
classes form into discrete regions.

298



5. Measurement vectors are inirinsic class conditionally
independent

P(X'|Z',X*) = P(X*| 2%), Vikel
an thus
p(X', X* | 24, 27) = p(X* | Z°).p(X* | Z*)

Some notes on notation. Superscripts will be reserved
for indexing pixels and subscripts as a shorthand for in-
dicating class (intrinsic or super). For example, p(X |
Y;) =p(X | Y = j). Super classes are indexed by j and
intrinsic classes by m. Matrices are indicated bold, eg—

P(Y3) P(Y =1)
. P(:Yg) _ P(Y:= 2)
P(Yx) P(Y = K)

ie, P(Y) is a column matrix representing prior super class
probabilities.

Note, also that p(X | Y), and p(X | Z) are column
matrices of conditional distributions and that

X |Y)=P(Z|Y)p(X |2Z) (1)

or, in non matrix form

PX|Y) =) P(Zm|Y;) p(X | Zrm)
med

(2)
as these will be useful later.

2.3 Special cases of T

In the case that |®| = |f| and the transition matrix T =
P(Z | Y) contains only 1s and 0s, then there is clearly a
1-to-1 deterministic mapping between intrinsic class and
super class and the models of 2.1 and 2.2 are equivalent.

When |®| > |8| then there are more intrinsic classes
than super classes (the most natural case). If each column
of T contains only 1 non-zero element then we have the
case of several intrinsic classes mapping deterministically
to one super-class; if this is not the case then some of
the super classes must be inherently indistinguishable, as
even knowing the intrinsic class with certainty will not
uniquely identify the super class. Clearly the rows of T
must sum to 1.

3 HONESTY

It can be useful if a classifier is able to present its result
in a probabilistic form, rather than as a categorical classi-
fication; that is, if the classifier generates the a posteriori
probability (PP) vector P(Y | X) for each pixel. As well
as the aid to interpretation that this may yield (when
the vector is used to display a “probability image”), it
will provide more information for any subsequent context
exploiting phase (eg probabilistic relaxation[7]). Classi-
fiers which have a statistical foundation will usually be
able to provide this probabilistic assessment. However,
what expectations should we have of the probabilities so
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produced? The vector should sum to one, certainly, but
should we not also expect that the implied assessment
of confidence be in some sense “honest”? We might say
that a classifier is honest in the overall sense if an
assessment of classification accuracy calculated by—
[, maxp(s;| X)- P(X)ax (3)
Xen 7
and using the generated PPs— closely matches the figures
for actual accuracy achieved on test data. We could ask
for more — that bands of probabilities are individually
meaningful, so that, for example, if one were to select
from a classified image, all pixels which were assigned a
PP in the range 0.7-0.8, then one could expect that this
selection of pixels would indeed achieve an accuracy of
around 0.75.1
The author has observed that many probabilistic image
classifiers are far from honest — particularly those which
are context exploiting. For example, those based on prob-
abilistic relaxation have a tendency to converge on a par-
ticular interpretation with near certainty when the actual
results do not support this. If a classifier is correctly de-
rived from statistical principals and all assumptions hold
precisely true, then it will be, a priori, honest. The prob-
lem of course is that the real world rarely conforms to our
idealized models and image classifiers at least often turn
out optimistic (curiously, classifier pessimism appears to
be rare).

4 IMPLICATIONS TO AN OB-
JECT CLASSIFIER

Landgrebe[9] describes an object classifier aimed at im-
proving the accuracy of classification of remotely sensed
data, using the assumptions stated in section 2.1 (though
note Landgrebe’s later work [6] which has already been
mentioned above). This is the ECHO system — “Extrac-
tion and Classification of Homogeneous Objects”. Follow-
ing is a brief summary of this system.

Two distinct stages are involved. First the image is
segmented into homogeneous regions; the details of the
segmentation procedure used are not of interest here.

In the second stage, each region is classified as a whole.
It is assumed that the segmentation process will have en-
sured that each region contains pixels from only one class.
The joint distribution of the n pixels in each “object” is
then treated as follows (denoting by X the vector com-
posed from all the measurements in the object).

AX | %) =p(X', X2 X" |Y5) (4)
The assumption of (super) class conditional independence
is then applied, permitting :-

p(xl,xz...x")|y,)=1'[p(xi|1g) (5)

but this violates the assumptions of the new model since
CClI is assumed only at the inirinsic class level.

1This can be formulated more precisely, involving an integral
over the prescribed range of probabilitics



ECHO then uses a maximum likelihood (ML) deci-
sion rule to select the class for the whole object, however
for the purpose of this discussion we will use a MAP or
“Bayes minimum risk” decision rule since this gives the
lowest theoretical misclassification. The ML rule is equiv-
alent to the MAP rule with equal prior probabilities and
a zero-one loss function [3].

4.1 Imposing the new model

We would like to answer the following questions:

1. What does the R.H.S of (5) equate to in terms of the
intrinsic class model?

2. What is the ’correct’ form of the joint conditional
distribution on the L.H.S of (5) in terms of the in-
trinsic class model?

3. What is the theoretical classification accuracy for
each of the two forms of the decision function for
different sizes of object and given distributions un-
der the intrinsic class model?

4. Will the a posteriori probabilities (PPs) predicted
by each of the two decision functions be “honest”, as
discussed in section 3 above?

In order to answer these questions we must re-cast the
decision function which was actually used in terms of the
new model and then compare this with a “corrected” ver-
sion which takes proper account of the model.

4.1.1 The decision functions

Using the MAP decision rule, both the ECHO original
and the modified version will have the same basic form:

D(X) = j i P(Y;).p(X | ¥;) = max P(Y3).p(X | Vi)

The difference will lie in the way that p(X | Y) is calcu-
lated. ECHO uses -

(X 1Y) =] o(X* %) ©)

which in terms of the new model translates using (2) to

n

[Irx1y) =I[P@I%ex12) @

i=1 =1

and expanding the matrix multiplication gives —

ﬁ (E P(Zm | Y;) p(X* lZm)) (8)

i=1 \med

However, if we use the intrinsic class model correctly then
we obtain:

p(X |Y;)=P(Z|Y;)p(X | Z) (9)
or equivalently—

Y P(Zm | %) DX | Zm) (10)

med

We can now exploit intrinsic class conditional indepen-
dence to expand p(X | Zn), ie

PX | Zm) = [[ p(X* | Zm) (11)

And substituting (11) into (10) gives -

AX1Y)= ) (P(Zm 1 %) - [T (X iZm))(IZ)

med i=1

Clearly the two expressions for p(X | ¥;) in equations (8)
and (12) are not equivalent.

We will denote the decision function that uses equation
(8) (ie the ECHO original) by D;(X), and the decision
function which uses the modified version, equation (12)
by D;(X). Of course D;(X) does not need the intrinsic
class distributions p(X | Z) since it could work directly
from equation (6). We can now proceed to attempt an
answer to question 3. posed above.

4.2 Effects on classification accuracy

The theoretical object misclassification rate of a deci-
sion rule Dy(X), under the assumptions of the proposed
model is (c.f [3, pg 21])

S P5) [ MDLR) IRE IR (13)
j€o vX

where P(X | Y;) is given by equation (12) and A(ja | 5)
is loss on classifying class j, as j,; here we take the sim-
ple case of A(ja | 48) = 0 if ja = ja, 1 otherwise. We
can now use this equation to compare the classification
accuracy of the decision rules D;(X) and D3(X) under
various assumptions of intrinsic class conditional distri-
butions p(X | Z) and transition matrix T = P(Z | Y). It
may be possible to obtain results by comparing the rules’
performance at the algebraic level, however no progress in
this direction can yet be reported. For now then, we will
have to be content with simply instantiating the required
distributions and seeing what numbers come out.

4.2.1 A Numeric experiment

We will consider the simplest non-trivial case, with 2 su-
per classes and 3 intrinsic classes, ie

K=2, 0= {11 2}
M=3 ®= {1,2,3}
The measurement space {1 is limited and quantized as
simply 2 = {1,2,3,4,5} (for reasons of computational
efficiency). Integrals thus become summations.
Normal statistics are used for the intrinsic class distri-
butions, although in view of coarse measurement space,

these were tabulated and re-normalized to ensure they
summed to exactly one. The normal distributions were—

(X |2) ~ Np=3,02=4]
p(X|2;) ~ N[p=3,o?=.25
p(X|23) ~ N[p=1,o0?=.25

These are illustrated in figure 2
The transition matrix T is

1 0 0
0 4 6



p(X|2)
R
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Figure 2: Intrinsic class distributions

Thus intrinsic class 1 maps uniquely onto super class

1 with intrinsic classes 2 and 3 contributing unevenly to

super class 2.
The prior probabilities used are

rn=(7)

4.2.2 Results

The graphs in figure 3 show the misclassification rate —
ie the value of eqn (13) as a percentage, for the two deci-
sion functions Dy(X) and D;(X), against n, the number
of pixels in the object (region). The actual performance
of decision function D;(X) (graph (a)), which ignores the
correlation of intrinsic classes, is erratic, with the misclas-
sification actually increasing after more than 4 pixels are
involved in the decision (ie n > 4). In (b), which shows
the performance for the corrected’ decision rule, Dz(f )s
the performance consistently improves as more pixels are
used in the decision.

Figure 3 (a) also shows the predicted misclassification
rate for the D; decision function. These are also calcu-
lated from equation (13) but with p(X | ¥;) derived from
formula (8). Notice the increasing disparity between the
actual and predicted error rates as n is increased. The
classifier becomes optimistic. Of course, the term “ac-
tual” here is somewhat false—it is the theoretically pre-
dicted “actual” rate assuming the proposed new model
with the given distributions are precisely correct.

4.3 Estimation of p(X | Z) and T

All of the above would be rather academic if there were no
way of obtaining these distributions; we cannot contem-
plate gathering them explicitly, through more detailed
training data. However, within the framework of an ob-
ject classifier system, such a procedure can be suggested.

We assume that the super class training data is in the
form of an image upon which randomly selected points
have been labeled. Recall that the image is first seg-
mented. The procedure is effectively a form of unsuper-
vised learning:-
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1. Apply the segmentation procedure to the training
image. We assume that each segmented region may
be regarded as representing an intrinsic class.

2. Gather distribution statistics for each of the arbitrar-
ily numbered regions, ie intrinsic classes; it would
seem reasonable to assume normal statistics. Where
the statistics for two regions are not significantly dif-
ferent, their statistics can be pooled and the regions
treated as belonging to one and the same intrinsic
class. Thus ® and P(X | Z) can be obtained.

3. Construct the transition matrix T from the pro-
portions of the super class training samples that fall
into each intrinsic class. It may be that some intrin-
sic classes contain no, or too few labeled samples;
in this case either that intrinsic class can be merged
with its closest (in pattern space) neighbour, or per-
haps more usefully, associated with an additional su-
per class which implies “reject”.

5 CONCLUSIONS

We have formulated a set of assumptions which aim to
model the class conditional correlation encountered in im-
age classification. These assumptions are based on the in-
tuitive idea of there being spatially correlated “intrinsic
classes” which are related to the ’super classes’ (of inter-
est in a particular study) in a probabilistic fashion via a
transition matrix. When this model was imposed upon an
object classifier which ignored the correlation, classifica-
tion accuracy was considerably reduced and the predicted
a posteriori probabilities became dishonestly optimistic as
compared with the predictions under the new model.

The “results” presented here are theoretical— the mo-
tivation for the new model is entirely intuative at the
present. Clearly further work is needed to construct an
object classifier under this model in order to see if im-
proved performance is actually achieved.
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