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means for locating objects in two dimensions. However,
the technique has certain problems, since the maximal
clique approach to graph matching which it employs can
be excessively computation intensive. This raises the
question of whether better results could be obtained by
other means. Here we attempt to answer this question, and
in particular to compare the LFF and GHT schemas. The
actual comparison is carried out in section 4, sections 2
and 3 being devoted to respective preliminary studies of the
two methods.

The local-feature-focus method has become a standard
means for robustly locating objects in two dimensions.
Yet it is not without its difficulties, since the maximal
clique approach to graph matching which it employs is
excessively computation intensive, belonging to the class
of NP-complete problems. Here we explore whether
similar results can be obtained using other approaches, and
in particular with the generalised Hough transform. The
latter approach is found to be essentially equivalent to
graph matching, while permitting objects to be located in
polynomial (0(n )) time.

1. INTRODUCTION

In many branches of image analysis, including particularly
that of automated visual inspection, it is necessary to
locate objects both rapidly and robustly in digital images.
During the past decade or so it has been found that the
Hough transform (HT)1 provides a sound basis for
achieving these aims. A significant breakthrough occurred
when it was found that edge orientation information could
be used to cut down the computation requirements of the
HT2 . The Ballard version of the HT achieved this for
objects of general shape, even in cases where the latter
cannot be described analytically3. The method is not
ideal, since computational load can still be considerable
when object orientations are unknown. This fact has
induced many workers either to improve on the generalised
Hough transform (GHT)4 or to turn towards other
techniques.

One such technique is the local-feature-focus (LFF) method
of Bolles and Cain5. This method is particularly useful in
cases where objects have certain strong features such as
corners and holes by which they may be located and
identified. Indeed, if objects possess high contrast features
such as these, then it should be highly efficient to use
them for object detection - the reason being that the
computation involved in searching an image decreases with
the size of the template used. However, this assumes that
it is trivial deducing the presence of an object once the set
of image features is known. Such an assumption is far
from the whole truth, though it is a useful starting
approximation. Early on, a graph-theoretic approach
seemed appropriate for matching observed features to
idealised object features6'7: later this developed into the
more sophisticated LFF method .

The LFF method is designed to work well even in
industrial applications where parts frequently overlap one
another, or where they may be defective or distorted: in
fact the method has become an oft-quoted and standard

2. GRAPH-THEORETIC APPROACHES
TO OBJECT LOCATION

If objects appear on a worktable or conveyor at a known
distance from the camera, and if also they are flat or can
appear in only a restricted number of stances in three
dimensions, it will be apparent that they may be identified
and located from a minimum number of small features.
Clearly, one such feature is insufficient, but two features
can in principle lead to positive identification if the
features are distinguishable and their distance apart
is known8. Suitable distinguishable features would be
holes of different sizes, or a hole and a corner. Even if the
features are indistinguishable, two of them may be
sufficient to locate an object if they are anisotropic -
for example, corners. However, two identical isotropic
features will leave a single ambiguity about the location of
an object unless it possesses 180° rotation symmetry.

In some ways it is more satisfactory to imagine that three
features are necessary to lift the ambiguity referred to
above, when objects are to be located and identified at a
known range. Unfortunately, this scheme of things is too
simplistic in many applications as it is insufficiently
robust against distortions and occlusions. In particular,
camera and other optical (e.g. perspective) distortions may
arise, or the objects themselves may be distorted, or by
resting partly on other objects they may not be quite in the
assumed stance: such problems mean that distances
between features may not be exactly as expected.
Furthermore, objects may be partly obscured by other
objects resting on them, or else they may be broken or
otherwise defective. All these factors mean that as many
features as possible should be taken into account in
locating and identifying objects. The maximal clique
approach • is intended to achieve this.

As a start, as many features as possible are identified in the
off-camera image, and these are numbered in some
convenient order, e.g. the order of appearance in a normal
TV raster scan. The numbers then have to be matched
against the letters corresponding to the features on an
ideal object. For simplicity we here assume that only one
type of object is being sought though several instances of
it may appear in the input field.
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The next step is to attempt to match each observed feature
(number) against each ideal feature (letter), each such
assignment then having to be checked for consistency, e.g.
according to the distance between the two features, and the
relative orientation of the feature and the line joining the
features (the latter situation being applicable for comers but
not for holes). A systematic way of achieving this is by
constructing a match graph in which the nodes represent
feature assignments, and arcs joining nodes represent
pairwise compatibilities between assignments. To find the
best match it is then necessary to find regions of the match
graph where the cross-linkages are maximised.

To this end cliques are sought within the match graph. A
clique is a complete subgraph - i.e. one for which all pairs
of nodes are connected by arcs. However, if one clique is
completely included within another clique, it is likely that
the larger clique represents a better match. Hence maximal
cliques are taken as leading to the most reliable matches
between the observed image and the object model •'.

Bolles and Cain used essentially this technique to locate
hinges in digital images . Hinges are characterised by 12
corners (8 convex and 4 concave) and four holes (of equal
size). In this case the algorithm for finding maximal
cliques became a computational bottleneck in the system,
so they took the short cut of using certain starting features
known as focus features: only a limited number of features
near any given focus feature were then sought. We
illustrate the situation for a general triangle (Figure 1).
For simplicity of illustration we assume that the observed
image contains only one triangle, that lengths match
exactly, and that no occlusions occur. The match graph in
this example is shown in Figure 2. There are 9 possible
feature assignments, 6 valid compatibilities and 4 maximal
cliques of sizes 3,1,1,1, only the largest corresponding to
an exact match. (Here we define the size of a clique as the
number of its compatibilities.) If occlusion of even one
feature had occurred, there would have been only 6 possible
feature assignments, 2 valid compatibilities and each of
these would have been maximal cliques: the result would
have been an ambiguity in the location of triangle - as
remarked earlier. In such an example the checking of
which subgraphs are maximal cliques is a trivial problem.
However, in real matching tasks it can quickly become
unmanageable. Another example is provided by Bolles :
in this case an engine cover is being sought in an image
containing a whole engine cover and another engine cover,
only part of which appears within the confines of the
image (this is one type of partial occlusion). Here 17
holes are visible within the image, an ideal engine cover
possessing 14 holes. In addition some of the holes are
large and some small. There are 2x3 possible assignments
of large holes and 12x14 possible assignments for the
small holes; hence the match graph contains 172 nodes*,
and ( 2 ) = 14,706 pairwise consistency checks must be
made to build the match graph. Bolles estimates that at
best it will take tens of seconds on a DEC KL-10 class
computer to build the graph and locate the largest maximal
clique .

Several algorithms have been written for finding maximal
cliques6' . It seems highly likely that the best of these is
close to the optimum speed. The reason for the time taken
being large is not the inefficiency of the particular
algorithm but the fact that it is not possible to devise a
maximal clique algorithm that runs in polynomial time for
a given number of nodes. Indeed, it has been shown that

the maximal cliques problem is "NP-complete", which
implies that it runs in exponential time9. Hence short
cuts of the type mentioned above are required to help
identify maximal cliques in most real applications.

In the next section we take a preliminary look at the GHT
before going on in section 4 to examine it as an alternative
to the maximal clique approach.

3. THE GENERALISED HOUGH
TRANSFORM APPROACH TO OBJECT
LOCATION

We begin this section by outlining the standard Hough
method for circle detection . In this method all edge
fragments in an image are first located; then votes are
accumulated in a parameter space congruent to image space
at positions which are a distrance R equal to the expected
circle radius along the local edge normals; parameter space
is then found to contain clusters of candidate centre points,
and peak location is used to find the most likely positions
of circle centres. Locating peaks in parameter space is not
a trivial task as the peak is often fragmented by noise -
especially that arising from aliasing round the periphery of
the object. The technique requires local edge orientation to
be estimated quite accurately10: this can be achieved to
within ~1* using the Sobel operator11. Note that the
amount of computation is minimised since the way edge
orientation information is taken into account cuts down the
numbers of votes cast in parameter space. This approach
to circle location is important in that it is highly robust
against occlusions, defects, distortions and noise.

The GHT aims to apply the same basic techniques when
objects have arbitrary shapes. In this case votes are
accumulated at an object localisation point L, which is
found not at a fixed distance R along the local edge normal,
but at a variable distance R in a variable direction <|), where
the values of R and <(> are functions of local edge orientation
Q: their values are obtained either analytically or from a
suitable lookup table called the R-table . Details of how
the R-table is constructed are beyond the scope of this
paper. However, the method is in principle capable of
locating objects whose shapes are analytically defined (such
as ellipses) or arbitrary shapes (cams, gaskets, etc.). The
method is also applicable to polygons including squares,
rectangles, and so on. The main disadvantage of the
method is that if the object orientation is unknown, it has
to be introduced as an additional parameter (i.e. an extra
dimension) in parameter space: this significantly increases
the numbers of votes cast in parameter space and the size of
the space that has to be searched for peaks. Means of
alleviating this problem are still being devised, though it is
now known how to optimise the situation in the case of
polygon detection4.

* According to the author's calculations this number
(from7) should read 174 (= 2x3 + 12x14), with a
consequent change in the number of consistency checks.
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Figure 1. A simple matching problem - a general triangle,
a - model template;
b - image.

Figure 2. Match graph for a general triangle.
The maximal cliques are: (1) Al, B2, C3; (2) A2, Bl;
(3) B3, C2; and (4) C l , A3. Although the respective
cliques have 3,2,2,2 nodes, we here measure the sizes of
cliques by the numbers of arcs; in this case they are
3,1,1,1. In general for a clique of v nodes there are ($)
arcs.

Figure 3. Placement of votes in parameter space for a
general triangle.
o - positions of observed features
. - positions of votes
• - position of main voting peak.

Figure 4. Another matching problem - a general
quadrilateral.
a - basic labelling of model (left) and image (right)
b - match graph
c - placement of votes in parameter space (notation as

in Figure 3).
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Figure 5. Cream biscuits located using the GHT.
(a) shows an off-camera 256x256 image of two cream sandwich biscuits with crosses indicating the result of applying a simple
hole detection routine.
(b) shows the two biscuits reliably located by the GHT from the hole data in (a). The isolated small crosses indicate the
positions of single votes.
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The GHT retains the advantages of the HT circle detector
described above in being highly robust against occlusions
and object defects. Indeed, it is known to be a type of
spatial matched filter, so it is in this sense optimal in its
noise rejection characteristics12. These facts make it
attractive to try out the GHT as a means of collating
information from small features on objects, as a possible
alternative to graph-theoretic approaches.

4. USING THE GHT TO COLLATE
INFORMATION FROM SMALL
FEATURES

In this section we analyse how the GHT can be used as an
alternative to the maximal clique approach, to collate
information from small features in order to locate objects
robustly in digital images. In order to simplify the
situation and the comparisons we shall make between the
two approaches, we consider initially situations where
objects have no symmetries and where the features are
isotropic and indistinguishable. This situation would
apply exactly when all features are holes of a specific size,
and all inter-hole distances are different - as for the general
triangle of Figure 1.

To apply the GHT for analysing feature information we
adopt the strategy of listing all features and then
accumulating votes in parameter space at every possible
position of L consistent with each pair of features. This
strategy is particularly suitable in the present context, as it
corresponds to the pairwise assignments used in the
maximal clique method, and allows us to compare like
with like when the two methods are finally assessed. To
proceed we have merely to use the inter-feature distance as a
lookup parameter in the GHT R-table. For isotropic
features this means that we have to have two entries for the
position of L for each value of the inter-feature distance.
Note that we simplified the analysis by assuming that no
symmetries exist and that all pairs of features have different
inter-feature distances. If this were not so, then more than
two vectors would have to be stored in the R-table per inter-
feature distance value.

We are now in a position to give a simple example of how
the GHT can be applied to feature collation. We start with
the triangle example of Figure 1. Figure 3 shows the
positions at which votes are accumulated in parameter
space. There are 4 peaks, with heights of 3,1,1,1, it being
clear that, in the absence of complicating occlusions and
defects, the object is locatable at the peak of maxium size.

Figure 4 shows the situation for a general quadrilateral, (a)
giving the basic labelling, (b) giving the match graph and
also showing the 12 valid compatibilities and the 7
maximal cliques of sizes 6,1,1,1,1,1,1, and (c) showing the
result of applying a GHT. In the latter case there are 7
peaks of sizes 6,1,1,1,1,1,1. Close examination of
Figures 1-4 indicates that every peak in parameter space
corresponds to a maximal clique in the match graph.
Indeed, there is a one-to-one relation between the two. In
the uncomplicated situation we are examining here this is
bound to be so for any general arrangement of features
within an object, since every pairwise compatibility
between features begets two object locations, one correct
and one that can be correct only from the point of view of
that pair of features. Hence the correct ones all add to give

a large maximal clique and a large peak in parameter space,
whereas the incorrect ones give maximal cliques each
containing two wrong assignments and each corresponding
to a false peak of size 1 in parameter space.

We assumed earlier that the objects being detected possess
no symmetries. If there are symmetries the situation
becomes slightly more complex, and a modified form of
the maximal clique approach is required. Space does not
permit a full analysis of the situation to be carried out here,
but we have concluded that the GHT and maximal clique
approaches are still essentially equivalent

When some of the features of an object are missing (e.g.
because they are occluded), the correspondence between the
two methods is retained: indeed, it is found that occlusion
does not make object identification any more complicated
or liable to error, for either method. Similarly, if any
additional features (e.g. from other nearby or overlapping
objects) are present in the image, they do not in general
interfere with interpretation: if the largest maximal clique
leads to a correct identification, then so does the highest
peak in parameter space, and vice versa.

Finally, we note that each of the methods can readily be
extended to situations where the features are corners or
directed corners instead of holes. Even with this change
the two methods remain essentially equivalent.

4.1. Results obtained using the GHT

Figure 5(a) shows a pair of cream biscuits which are to be
located from their "docker" holes - this strategy being
advantageous since it has the potential for highly accurate
product location prior to detailed inspection. The holes
detected by a simple template matching routine are also
indicated in Figure 5(a); the template used is rather small
and as a result the routine is fairly fast but fails to locate
all holes and in addition gives false alarms. Hence is it
required to use an "intelligent" algorithm to analyse the
hole location data.

Figure 5(b) shows the positions of candidate object centres
as found by the GHT. The small isolated crosses indicate
the positions of single votes, and those very close to the
two large crosses lead to voting peaks of weights 10 and 6
at these respective positions. Hence object location is
both accurate and robust as required.

4.2. Computational load

In this sub-section we examine the computational load of
the two approaches to object location. For simplicity we
imagine an image that contains just one wholly visible
example of the object being sought. Suppose the object
possesses n features and that we try to recognise it by
seeking all possible pairwise compatibilities, whatever
their distance apart (as in all examples in the main part of
section 4). (Note that short cuts of the type mentioned in
section 2 can validly be applied in both approaches, with
no major change in the final comparison.)

For an object possessing n features, the match graph
contains xr nodes (i.e. possible assignments), and there are
n2(n-l) /2 possible pairwise compatibilities to be checked
in building the graph. A possible assumption is that 50%
of the pairwise compatibilities will hold , but even if this
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is not so, the amount of computation at this stage of the
analysis is 0(n ). To this must be added the cost of
finding the maximal cliques. Many authorities assert that
this problem is NP-complete and therefore is non-
polynomial and probably exponential in n • .

Now let us see the cost of getting the GHT to find objects
via pairwise compatibilities. As we have seen, total height
of all peaks in parameter space is always equal to the
number of pairwise compatibilities in the match graph.
Hence the computational load is of the same order, 0(n4).
Next comes the problem of locating all the peaks in
parameter space. In this case parameter space is congruent
to image space. Hence for an NxN image only N points
have to be visited in parameter space and computational
load is 0(N2).

5. CONCLUDING REMARKS

This paper has shown that, apart from certain
complications arising from symmetry, the maximal clique
approach to object identification and location is equivalent
to the GHT approach. However, whereas the maximal
clique approach takes 0(n ) time to build the match graph
and exponential time to analyse it for maximal clique
solutions, the GHT takes 0(n4) time to build parameter
space, and then 0(N ) time to locate the object. We are
therefore forced to conclude that the graph theory formalism
is not so well matched to the relevant real-space template
matching task as the GHT.
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