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We consider the problem of detecting elliptical curves
using Hough Transform methods. Storage and efficiency
problems are overcome by decomposing the problem into
two stages. The first stage uses a novel constraint as
the basis for a Hough Transform to detect the ellipse
center while the second stage finds the remaining param-
eters using a simple but efficient focussing implementa-
tion of the HT. The method is applicable in many situa-
tions where previous HT schemes would fail. Results are
demonstrated for complex image data containing several
overlapping and occluding ellipses.

1. Introduction.

The detection of elliptical curves or fragments of
such curves is an important task in computer vision as
these shapes occur commonly in many types of scene.
Man made objects often have circular profiles which,
when viewed obliquely, project to elliptical shapes in
a 2D image. Ellipse detection is therefore a powerful
method of cueing into specific geometric object models.
Also, the measured values of ellipse parameters provide
data from which it is possible to infer the relative orien-
tation of object and camera. The importance of ellipse
detection was recognised in the model based vision sys-
tem, ACRONYM, developed by Brooks and BinfordW.
They used the generalised cylinder as a basic modeling
primitive and had to extract lines and ellipses as ba-
sic image features. Shortcomings of their system were
largely ascribed to poor segmentation and consequent
unreliability of the feature extraction process.

The Hough Transform, HT, is a method of parame-
ter extraction whose properties make it particularly ap-
propriate for the detection of shapes within poorly seg-
mented imagery'2'. It is a method which takes pieces
of local evidence and votes for all parameter combina-
tions which are consistent with this evidence. The votes
are collected in an array of counters which is called the
accumulator array. The accumulator array is a discrete
partitioning of the multidimensional space which spans
the possible parameter values. Image points on a shape
vote coherently into the accumulator counter which rep-
resents the parameters of the shape while votes from
isolated or random image points combine only incoher-

ently. At the end of the voting or accumulation process
those array elements containing large numbers of votes
indicate strong evidence for the presence of the shape
with corresponding parameters. These properties mean
that the method is insensitive to image noise but it can
still detect shapes using the type of fragmentary evi-
dence which results from both poor image segmentation
and object occlusion.

The principal disadvantage of the HT is that it is
demanding both in terms of the amount of computer
storage required to represent the multidimensional pa-
rameter space and the amount of computation to carry
out the accumulation of votes in this space. Ellipse
detection requires the determination of 5 parameters.
Each parameter has a large range of values and if uni-
formly high accuracy of representation is needed over
this range then resource demands become unpractically
large. In this paper we consider how ellipse detection
can be made a practical proposition by using edge di-
rection information and decomposing the ellipse detec-
tion problem into two sequentially executed HT stages of
first finding the center of the ellipse and then determin-
ing the remaining three parameters. Although this de-
composition idea has been used by Tsukune and Goto'3'
and Tsuji and Matsumoto'4' we propose an alternative
method of ellipse center finding that will work in situa-
tions where the previous methods fail. In addition the
second stage of our algorithm utilises a multiresolution
approach to detect peaks in the HT space of the remain-
ing three parameters. In Section 2 we discuss both the
general principles of the ellipse finding problem and spe-
cific details pertaining to our method. Section 3 gives an
approximate analysis of the complexity of the method
and Section 4 includes results of experiments on com-
plex image data containing several overlapping ellipses.
Concluding remarks and comments are included in Sec-
tion 5.

2. General principles.

The general equation of an ellipse is,

X2 + B'Y2 + 2D'XY + 2E'X + 2G'Y + C' = 0, (1)
where B', D', E', G' and C" are constant coefficients nor-
malized with respect to the coefficient of X2. If we use
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the standard HT method with this equation, we have
to construct a five dimensional parameter space and if
each parameter range is divided into a intervals then the
accumulator space requires a5 storage locations. Even
for modest values of a this becomes unpractically large.
However the problem can be made much more tractable
if we consider using edge direction information and de-
composing it into a series of parameter estimation steps,
each of which is computationally less demanding. The
exact problem decomposition can be achieved in a vari-
ety of ways and this approach has been used by several
authors'3'4'. The problem decomposition which we use

• in this paper includes a novel method to find the param-
eters which describe the ellipse center. This is followed
by an efficient implementation to find the three remain-
ing parameters.

2.1 Stage 1: Center finding.

Center detection is probably the most important
stage in the detection of ellipses. One commonly used
method involves the determination of the mid-point of
the line between two image points with parallel tangents.
If these two points are on the same ellipse then the mid-
point is the center of the ellipse. This principle can be
used as the basis of a HT method. The first step of
the procedure is to extract pairs of image points whose
gradients are almost the same. The next step is to con-
struct a two dimensional histogram of the mid-points of
such pairs. The histogram locations which receive high
counts become candidates for the center of an ellipse.
This procedure is the one used by Tsukune and Goto'3'
and Tsuji and Matsumoto'4'.

A disadvantage of the above procedure is that it
fails if the image does not contain segments which are
symmetrical about the ellipse center. This type of situ-
ation is common where objects are viewed so that they
are occluded by other objects or by parts of themselves.
In this paper we propose another center finding proce-
dure, which can be used to detect the center of an ellipse
in a more general setting. The new procedure is based
on a simple property of ellipses. Suppose P(xi,yi)
and Q(x2,J/2) are two points on an ellipse with non-
parallel tangents intersecting at a point T(ti,tz). Let
Af(mi,m2) be the mid-point of PQ. Then the center
of the ellipse must lie on the straight line TM, as illus-
trated in Figure 1. The form of TM has been found
as,

with

y(ti — mi) = x(*2 — rnt) + ) (2)

yi - y 2 - s i 6 + J26
6-6

66(^2 - *i)

6-6

where ft and £2 are the slopes of the tangents to the
ellipse at the points P and Q respectively.

Lines in the form of equation 2 can be constructed
from different pairs of image points, and they should
intersect at the same location if they are on the same
ellipse. A standard HT can be used to accumulate these
lines in a two parameter accumulator array. The ac-
cumulator cell which receives the highest count is the
candidate for the center of an ellipse.

2.2 Stage 2: Determination of remaining parameters.

Once the location of the center of an ellipse has been
estimated, the subset of image points which are consis-
tent with it can be found by a second pass through data.
The origin relative to which the points are described, can
be translated so as to coincide with the estimated ellipse
center and then the equation describing the points of the
ellipse becomes

X2 + BY2 + 2DXY + C = 0, B - D2 > 0. (3)

There are several ways in which the remaining pa-
rameters B, C and D can be estimated. Tsuji and
Matsumoto'4' estimate all five parameters of the best
ellipse formed by the subset of points using a least mean
squares fitting procedure. As with all least squares pro-
cedures, this is likely to be highly sensitive to spurious
outlier points. In the work of Tsukune and Goto!3' the
three parameter estimation problem is decomposed into
two further steps using the property that differentiation
of equation 3 with respect to X yields

M

Using measured gradient values equation 4 forms the ba-
sis of a two dimensional HT method to determine B and
D. Once B and D are known a simple one dimensional
HT can be used to estimate C using equation 3. The
drawback of this approach is that the range of the pa-
rameters is large and even a two dimensional parameter
space can require a large amount of computer storage.
Also the efficiency advantages of the decomposition into
an increasing number of stages must be weighed against
the systematic effects of propagating errors through sev-
eral stages. As the number of stages increases so does
the reliance of the results on the accurate determination
of gray level edge directions.

In this paper we determine all three remaining pa-
rameters simultaneously using equation 3 and a space
efficient peak detection algorithm based on the Adaptive
Hough Transform, AHT, method'5l. The peak detection
algorithm locates the peak areas of the Hough Trans-
form space without computing the background level in
full detail. The algorithm is based on an iterative 'coarse
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to fine' accumulate and search strategy. A small fixed
size accumulator is used. In our work we use a 9x9x9
accumulator. The accumulator always partitions the
current range of parameters into these few intervals.
During the first iterative step the range of each param-
eter is large and thus each parameter is only coarsely
resolved. The HT is accumulated and the accumulator
cell with maximum counts is identified. The parameter
range covered by the accumulator is then centered about
the maximum cell and, if the parameter is not resolved
to the required accuracy, the range of that parameter is
reduced to one third of its previous value. This basic
cycle of accumulation and parameter range reduction is
iterated and the method focusses in on, and accurately
defines, the position of the most prominent peak in the
parameter space. In our ellipse finding application the
subset of points from the first stage of the method are
predominately from a single ellipse and therefore the fo-
cussing works well. Apart from its efficiency, another
advantage of using the focussing is that it can dynam-
ically and independently vary the resolution to which
each parameter is measured. This is particular impor-
tant for estimating the parameters B, D and C, because
the range of values of C are usually much larger than
those of B and D and therefore it needs to be more ac-
curately determined. After determination of all three
parameters, the length of the ellipse axes, a and b, and
its angle of rotation, 9, can be calculated using

- 2 C

\xi - x2\ > S2, or |yi - y2\ > fa-

where Si and S2 are some pre-determined values.

Let £ be the slope of the line TM determined in
equation 2. The center histogram of the new method
can be simplified further if we notice that

x < or x> mi>

m2 if III > 1.

a = [(B

where (x, y) is the co-ordinate of the center, say. If N
is a point on the line TM such that the center of the
ellipse lies on MN then instead of accumulating votes
for all points along TM we only have to count the votes
for the section MN. The length, L, of MN can be pre-
determined based on prior knowledge of the likely sizes
of ellipses in the image.

Once the center finding HT has been accumulated,
the parameters of a possible ellipse center are identified
by determining the accumulator cell with the largest
numbers of counts. If the number of counts exceeds a
predetermined threshold then the center is accepted as
valid and the subset of image points supporting this cell
are identified and passed to the second stage which finds
three parameters B, D and C. Once points have been
identified with a candidate center they are deleted and
the remaining points can again be passed through the
center finding accumulation stage. This center finding
procedure is repeated until the maximum of the accu-
mulator falls below the predetermined threshold.

6 =
- 2 C

(B + 1) +

= itan-

2.3 Practical considerations.

l-B

In our proposed method of ellipse finding the HT
space for center finding may become complicated when
there are several ellipses in an image. This is caused
by background votes generated by pairing image points
on different ellipses. A complex parameter space makes
peak detection a difficult task and is therefore highly
undesirable. In order to overcome or reduce these effects
we can invoke aprior knowledge of likely ellipse size or
inter ellipse spacing to vote the pairing of image points
which are unlikely to lie on a common ellipse. It is also
not necessary to pair two image points if they are too
close to each other. Based on these considerations, we
only have to pair two image points, [xi, t/i) and (x2, y2),
if they satisfy the conditions,

3. Complexity of the algorithm.

In this section we make an approximate calculation
of the complexity of our algorithm making the simply-
fying assumption that Si and 62 are suitably chosen so
that there is little pairing between points of different
ellipses. If there are k ellipses and each ellipse is com-
posed of Hi image points then the number of votes cast
by the Ph ellipse will be the product of the number of
image point pairs in that ellipse and the number of votes
which each pair contributes, viz

- 1 )

where L is the prespecified length of the incremented
line MN. Note that the complexity of forming pairs is
0(n?) whereas the center finding methods used in [3,4]
are only linearly dependent on n<. The total number of
votes cast in determining the first centre location will
be the sum of these votes for all A; ellipses

~x2\ < Si, and (5)
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In determining the second center location the image
points associated with the first are removed and the HT
is reaccumulated-. This process of point removal and
subsequent HT accumulation continues until all k el-
lipses have been found. Thus the total number of votes
cast in the center finding stage is

k-lk-j

vtnt =
- 1)

y=o«=i

The actual number of votes cast will be dependent on
the rii and the order in which the ellipses are found. The
minimum number of votes will occur when the largest
ellipses are found before smaller ones. The simplest up-
per limit on the cost is to assume that no points are
discarded and therefore in finding k ellipses the accu-
mulation is iterated k times. Thus the cost of finding k
ellipses would be O(k2) that of finding a single ellipse.
A special case of particular interest, and maybe more
indicative of the average case complexity, is when all el-
lipses are of the same size. In this case the cost for Vtot
is O(fc(fc*^). Obviously, this method of iterative ac-
cumulation is undesirably inefficient but it seems to be
necessary to achieve reliable identification in a complex
center finding space. In future work we hope to inves-
tigate more efficient ways of analysing the parameter
space.

The second stage of the algorithm using the itera-
tive focussing algorithm requires a 9x9x9 accumulator
array. At each iteration, every image point has to be
evaluated to determine the subset of accumulator cells
that its parameter surface intersects. This procedure
required 3x92 evaluations of the function in equation 3.
Assuming the cost of each function evaluation is com-
parable to the basic operation of determining and incre-
menting a cell in stage 1 then the cost per iteration of
the second stage is very approximately proportional to

Cx = 3 X 92 X

The maximum number of iterations required to localise
the peak is governed by the parameter whose range
needs to be most finely divided. However, as each it-
eration produces a range reduction to | of the previous
value the process quickly converges. In our experiments
the focussing never required more than 10 iterations to
achieve the required resolution. Therefore the cost of
the second stage will be

In this section we demonstrate the proposed two
stage algorithm using computer generated ellipse data.
Figure 2 shows 67 edge points from a segment of an
ellipse with center at (116.8,85.72). The edge points
along with edge gradient directions are extracted using
Spaceks edge detection algorithm!6!. Other boundary
detection methods which accurately measure edge gra-
dient or curve tangent information can be used. For
the center finding algorithm we set the values of <5j and
82 to 5 and 30 pixels respectively. The length, L, of
the line MN was taken to be 30 pixels. The HT was
accumulated in a 256x256 accumulator array. Using
the new center finding algorithm, the center is found
at (116.5 ± 0.5,86.5 ± 0.5). It should be stressed that
previous center finding methods based on parallel tan-
gents axe not applicable in this situation. In the sec-
ond stage of the algorithm the initial ranges for C, B
and D were chosen arbitrarily large so that they en-
compassed the parameter values for any realistic ellipse
which was contained wholly within the 256x256 image.
The rapid convergence inherent in the focussing HT im-
plementation meant that this incurred no significant ex-
tra computational cost. The parameter values eventu-
ally found were 5=0.93827 ± 0.25, D=-0.17284 ± 0.25
and C=-382.2588 ± 0.5. The lengths, a and b, of the
major and minor radius and the angle of rotation, 8 of
the ellipse were calculated from these estimates and were
found to be a=21.948, 6=18.274 and 5=50.062°. These
compare with true values of a—22.231, 6=18.437 and
0=50.675°. The image generated from the estimated
parameters is given in Figure 3.

Figure 4 shows a more complex image consisting of
eight ellipses with a total of 657 edge points. Numbers
have been overlayed on the figure and these are used in
Table 1 which summarises the true and estimated val-
ues for the ellipse parameters. Figures 5a-5d show edge
points that remain at some of the intermediate stages
of the method after particular edge points have been as-
sociated with candidate center locations. Most of the
ellipses have their parameters estimated well except for
the ellipse centered at (140.24,35.78). The center of the
ellipse was found well but the method failed in the sec-
ond stage. However it should be noted that this estima-
tion is based on only 14 points and the curve fragment
is so small that it may be equally well interpreted as
part of some other ellipse. Figure 6 shows the image
generated from the estimated parameters.

C2 = 10 X 3 X 92 X
t = i

4. Experimental results.

5. Discussion and conclusions.

The new method of ellipse center finding which we
suggest requires less restrictive assumptions than the
one commonly used. It is likely to be applicable to a
much larger range of practical problems because effects
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such as self occlusion lead to image fragments which,
although elliptical, are highly asymmetric about the el-
lipse center. The price paid for this increased appli-
cability is an increase in the number of computations.
However, the basic operation in the center finding step
is the voting for a line of points in accumulator space
and this could become an inexpensive primitive oper-
ation if implemented in dedicated hardware. The fo-
cussing method used at the second stage works well and
is efficient. At the moment, we overcome some of the
peak detection problems in the center finding parameter
space by deleting image points associated with candi-
date centers and then reaccumulating the HT with the
reduced list of image points. This is an inefficient pro-
cedure and future work will attempt to develop ways
of simplifying!7! the parameter space to avoid wasteful
reaccumulation.
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Fig.(l) Basic geometry for center finding. The center of an ellipse must lie on the line MN.

Fig.(2) The image of a segment of an ellipse. Fig. (3) Reconstruction of the image of Fig. (2)

based on the estimates of the parameters.
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Fig.(4) The image of 8 ellipses.

(5c) (5d)

Fig.(5a-d) The remaining edge points at some of the intermediate stages after particular

edge points have been associated with candidate center locations.
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Fig.(6) Reconstruction of the image of Fig.(4) based on the estimates.

Table 1. The true and estimated values of the parameters of ellipses as shown in Fig. (4) and Fig. (6) respectively.

Ellipses

1

2

3

4

5

6

7

8

Centers
True

84.56
110.98

120.56
110.98

100.12
60.24

130.49
30.68

99.25
140.56

130.90
150.56

250.05
56.90

140.24
35.78

Estimated

81.5
109.5

118.5
110.5

100.5
60.5

129.5
31.5

98.5
145.5

130.5
150.5

249.5
57.5

141.5
34.5

True

25.5
7.25

25.5
7.25

12.35
8.35

30.67
15.43

32.67
21.98

22.35
15.67

30.5
12.67

17.95
11.45

Radii
Estimated

23.45
7.26

22.01
6.64

14.05
8.46

29.04
16.38

27.55
20.70

24.14
15.90

32.94
13.04

27.86
14.13

Angles
True

20

20

80

145

85

33.75

128.34

32.49

of rotation
Estimated

19.76

20.41

74.43

145.36

66.26

31.17

127.52

19.20
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