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A method for the analysis of transmission electron mi-
croscopy diffractograms for determination of the phase
contrast transfer function (PCTF) is presented. This
is accomplished by pattern recognition methods together
with a nonlinear regression method using apriori knowl-
edge about diffractogram shapes and results in an auto-
matic computation of defocus and astigmatism param-
eters. Other applications, e. g. for Interferometry
fringe analysis is possible, whenever the fringes can be
described in a similar way.

INTRODUCTION

The imaging process in Electron Microscopy can be de-
scribed in terms of the Linear Optical Transfer Theory1

by means of the optical transfer function of the whole
system or it's Fourier transform. For weak-phase objects
following equation for the wave function holds (for the
one-dimensional case) 2
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where the first term represents the object function, the
second the defocus effect, the third the path to the lens,
the fourth the lens itself, and the fifth the path to the
image plane.
The relationship between the two-dimensional object
function and the image function can also be described
in the Fourier domain by a linear operator 3.
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where 6 is the delta function and H {<5(r - r')} is the
system's PSF.

Provided that the system is linear and space-invariant it
follows that
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or

in the Fourier Domain, where K^ is the optical transfer
function of the system. By deconvolution, the object
function can be separated from the PSF, which gives
the relation between object and image function for all
spatial frequencies.
According to Scherzer4, following relation between aper-
ture and defocus holds for weak-phase objects

where $ is the diffraction angle, 6f the defocus and c,
the aperture coefficient of the lens.
This equation must be further extended due to the only
partial coherent illumination in the high resolution area
and the energy distribution of the electron bean, which
produces the chromatic error.
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The transfer function for weak-phase contrast is then
given by 5
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For the Philips EM301 (c, = 3.4mm, cc = 3.1mm, ffi =
3 • IO~6,U = 100kV,T = 2800/O the transfer function
for 6f = 112 is shown in Figure 1. The oscillation
of the PCTF with spatial frequency yields positive or
negative contrast for object details having different spa-
tial frequency ranges, so electron micrographs at high-
resolution are not easy to interpret. Especially annoying
is the lack of image details which spatial frequencies fall
onto the zero-crossings of the PCTF. This can be over-
come by construction of inverse filters for amplitude and
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Figure 1: PCTF of Phillips EM301, 6f = 112

phase 6, which has been done at the Dept. of Physics
at the University of Bremen 7'8. The first step in this
procedure is the precise determination of defocus for all
azimuth angles.

ACQUISITION OF FRINGE DATA POINTS

A typical Thon-Diffractogram 9 of a carbon foil is shown
in Figure 2. The elliptical fringes represent different
PCTFs for all azimuth angles 7. In case of no axial
astigmatism the fringes would be circles. In general, the
images are noisy and the fringes are not closed. Fourier
transform approaches have been tried but the results
turned out difficult to interprete and the method itself
is time-consuming. For this reasons, a local approach in
the spatial domain has been choosen:
Projections of the image in x and y produce histograms
which are smoothed first by standard moving aver-
age methods. Then, from their maxima the centre
of the concentric fringe system is calculated. Profiles
through the centre are taken, using alternatively a two-
dimensional average, respectively some sort of 'tangent'
operator, see Figure 3. The resulting histograms are
evaluated for the minima, which give the limits for the
application of a center-of-gravity operator which is ap-
plied to the non-smoothed data to determine the center
line of the fringe. Its output is labeled with respect to
the fringe number. At last, the corresponding x and y
coordinates in the images are computed from the labeled
output.
Now, a set of data points representing center lines of
fringes is available and can be used for fitting.

APPROXIMATION
CURVES

OF QUADRATIC

Given a quadratic function:

fx.y •= cix2 + c2xy + c3y
2 + c4x + c5y - 1 = 0

with T

z' := [xf^iyi^^Xi^i]

Figure 2: Thon-Diffractogram of a carbon foil

as the data vector and
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the coefficient vector for which
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must be minimized, i.e.
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Cross Section (smoothed)
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Figure 3: Cross section through fringe pattern, determi-
nation of center lines

and B :— AT • A, then
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Since BT = B, transposing results to
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The matrix inversion is done by a modified Gauss-
Jordan algorithm.

DEFOCUS CALCULATION

The last step is the assignment of the fitted curves with
the corresponding defocus parameter. For this reason,

first the intersections of the scanning profile with the de-
termined curves are calculated and transformed to cor-
responding lengths in the image.
The PCTF is zero for disappearing sinus arguments, i.e.
for 0.7T, 2TT . . . Hence,

6f=cs
2n

71 = 0 , 1 , 2 , . . .

for the period length R = X^V, where A is the wave-
length of the laser used for diffraction (632.8 nm), / is
the focal length of the diffraction device (1125 mm), and
V is a combined magnification factor for the whole chain
EM - diffraction device - scanner, which is calibrated by
integration of a ruler in a test image.

Figure 4: Ellipse fitting without use of center coordi-
nates, ten datapoints used for approximation

IMPROVEMENTS FOR ELLIPSE FITTING

In general, the approximation procedure does not guar-
antee for a special curve (e.g. an ellipse). Instead, for
some sets of data points, better fitting hyperbolas are
found. This can be overcome by using the known centre
coordinates of the ellipses to replace two coefficients and
the solution gets even smaller:

/ 2s\x ~ *xxc)

where the c,- are the columns
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The same procedure is recommended if only a part of
an elliptical fringe is present. In this situation, often a
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hyperbola is found, or the best fitting ellipse is not the
desired one, see Figure 5 and Figure 6.

SYSTEM REQUIREMENTS

The images have been taken by a high-resolution (2048
pixels) CCD-line scanner, which was also used for char-
acter recognition purposes and therefore produced a bi-
nary image. The run-length encoded image was trans-
mitted to a UNIX workstation were final processing took
place. Sometimes transmission errors occured, which re-
sulted in wrong decoding of image parts. The method
is resistant to such errors.

Figure 5: Ellipse fitting using only six datapoints from
the upper left part

SUMMARY

In contrast to other methods 10>11, the presented method
can only process fringe patterns which can be described
by quadratic functions. But this can be done very
quickly, fully automatic, on noisy data, and with a high
accuracy which stems from the knowledge about the
class of curves to approximate.
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