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We describe investigations applying grey-scale mathematical
morphology to the problem of feature detection. We show how
a combination of morphological operators can be interpreted
in terms of the differential geometrical characteristics of the
intensity surface. This is significant in that it provides in-
sight into how morphological operators manipulate image data
in a manner that has no parallel in traditional convolution-
based image processing. Results using a simple morphologi-
cal boundary detector compare favourably with the output of
a normal edge detector such as the Canny operator. How-
ever, boundary detection differs in two important respects;
the performance is generally better in regions of high image
curvature and image junction information remains ezplicit.
We provide ezperimental evidence to support these claims.
An image description is only of use if it is an aid lto im-
age understanding. We conclude with a brief discussion of
a morphologically derived scheme based on boundary surface
features and indicate how such a description prouvides po-
tentially powerful constraints for correspondence algorithms.

Introduction

This paper is concerned with the application of grey-level
morphology to low-level feature detection in intensity images
for computer vision purposes. To the author’s knowledge,
there has only been one other published work specifically
on this subject. Lee, Haralick and Shapiro discuss the im-
plementation of a morphological ‘edge detector [10]. They
derive a ‘blur-minimum’ edge detector based on simple mor-
phological operations and compare its performance to that
of the cubic facet second directional derivative edge detector
(2DD) [5] and a number of threshold/enhancement operators.
Although the morphological edge detector’s performance is
comparable to that of the 2DD, the development of the oper-
ator appears rather ad hoc and does not seem to offer a nat-
ural extension to design detectors for other image features.

In the past two decades or so, the theoretical basis for much
research into edge detection has focussed on exploiting the al-
gebraic structure of images. The Marr-Hildreth Laplacian of
a Gaussian and the Canny operator are probably the most
well-known edge operators of this type. However, the perfor-
mance of a Canny operator in regions of high image curvature

*This is a summary of a paper in preparation
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(texture, corners etc) and at image junctions is both inconsis-
tent and unpredictable . Why this is so is quite simple. Edge
detectors are designed for 1D ‘events’. Corners and junctions
clearly do not have such a simple image structure (see for
example, the “T’-junction in figure 1).

The structure of corners and junctions contain rich geomet-
ric information about the imaged scene, giving information
about such things as object surface intersections, reflectance
discontinuities and illumination discontinuities. However,
with the exception of the ‘L’-junction [4], it is not possi-
ble to formalise a general model for such image structures
in terms of differential parameters. In a previous paper [18],
I showed how corners and junctions could be characterised in
terms of the differential geometry of a facet model. Clusters
of elliptic and hyperbolic points were found to be good indi-
cators of such two-dimensional ‘events’ in real images. It is
the idea of grouping neighbourhood responses which is impor-
tant here. Responses to second differential operators reflect
their source of origin. Random noise generates a spurious
response, whereas neighbourhood support provides evidence
of genuine two-dimensional image structure. Finding specific
image structure suggested looking at mathematical morphol-
ogy as an alternative means to both detect and describe junc-
tions. This paper reports on some of these investigations.

The foundations of the mathematics of morphology are at-
tributed to Matheron [14] and Serra (22] in the mid 70’s.
Later work, most notably by Sternberg [24], has extended
the analysis from binary to grey-level morphology. Despite
applications in industry, until recently the academic vision
community has shown little interest in exploiting morpho-
logical techniques. Most work on morphological processing
has focused on binary images. Surprisingly, grey-level mor-
phology has received less attention, even though the morpho-
logical transformations frequently admit of useful geometric
interpretation. Relating these inherently nonlinear ‘image
re-shaping’ operations to more familiar techniques of image
analysis remains an important gap in our present understand-
ing of this image processing technique. Towards this goal,
Maragos considers some relationships between nonlinear and
linear filters in [12,13]. This paper is concerned with differen-
tial geometrical interpretations of morphological operations.

Section 1 considers boundary detection and discusses as-
pects of morphological operations which make them well
suited for edge and boundary detection. We describe an
apparently simple boundary detector to show how our intu-
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itions, in this case about the meaning of an edge, can be
translated into the language of mathematical morphology.
Key concepts relating differential and morphological struc-
tures turn out to be parallel and canal surfaces. We review
some of the relevant properties of these mathematical sur-
faces and show how they can help us to characterise bound-
ary points. The detection of valleys, ridges and corners is
considered in Section 2, where it is shown how and why the
operations of closing and opening can be interpreted as mea-
sures of image curvature. This leads us to comment briefly
on the connection between mathematical morphology and the
blending of surfaces in solid modellers in Section 3. An image
description is only of use if it is an aid to image understand-
ing. In Section 4 we present experimental results to show how
a scheme based on boundary surface features has potential for
providing powerful topological constraints for correspondence
algorithms. Edge maps based on this scheme are shown to
compare favourably with those derived from the Canny op-
erator. However more significantly, junction information re-
mains explicit. We conclude the account by indicating some
of the future directions for our investigations.

1. Boundary Detection !

In this section we assume ideal, noise free imagery, and as
usual only consider the case of surfaces with one dimensional
(1D) discontinuities.

Broadly speaking, physical edges give rise to 1D disconti-
nuities in the intensity image surface [8]. As is well known,
this suggests that edges can be found by locating local max-
ima in the first directional derivative or equivalently, zeros
in the second directional derivative taken in the direction of
the gradient. A number of edge operators are based on this
principle (5,2,23).

We identify several practical problems with this approach.
‘Blurring’ introduced by imaging systems is usually ignored
in theoretical analysis and considered a hindrance in practice,
yet it gives a characteristic shape to the grey level function in
the vicinity of boundaries which often has a direct correlation
to the source of origin. ‘Edge’ detectors do not perform reli-
ably at image junctions where the local surface clearly does
not have a 1D structure. Further, strictly speaking as we are
dealing with digital data, we require regularisation ? to make
the surface differentiable. However, the detail of many pow-
erful image constraints, such as ‘T’,and “Y’- junctions will be
destroyed by such processing.

Morphological techniques, provide a way of filtering images
that potentially avoids these criticisms. Because the language
of mathematical morphology is based on transforming images
treated as sets, the mathematical problem of defining bound-
aries is well-posed. Further, there is a clear distinction be-
tween the role of derivatives and gradients in the ‘traditional’
treatment of surfaces and that used in the context of mathe-
matical morphology.

1.1 Morphological Boundary Points

A boundary 98X, in the topological sense can be defined as
the set of points for which all neighbourhoods intersect both

1Space limitations mean that some familiarity with mathemat-
ical morphology has been assumed. [6] is a good tutorial paper on
the subject

2often Gaussian smoothing but not necessarily
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Figure 1: Differential operators manipulate the 2D pro-
jection (B) of the intensily image surface (a). This ez-
plains why they can’t reliably find junctions.

the set X and its complement X°. Translated into mathe-
matical morphology (details can be found in [21]) this leads
to the following definition:

Morphological Boundary: A morphological boundary 8 Xm
of a set X is defined as the set difference of the dilation and
erosion of a set X by a spherical structuring element B,.

3Xm=(X®B,) - (X0 B,) (1)

A similar definition is commonly used in the morphological
community as the basis for gradient estimate edge operators,
except that disc or line elements are used in place of the
sphere. However this apparent similarity is misleading. A
morphological boundary as defined above, is not what we
normally regard as an edge. That is, morphological bound-
ary points include regions (smooth surface patches), edges
(singularity curves) and junctions (singularity points). The
explanation for this difference is as follows. Grey-level mor-
phological operators are 3D operators in that they work with
the image surface. Differential operators manipulate the 2D
projection which explains why it is nontrivial to find junctions
with them (figure 1). To a differential operator, the notion of
a step and a corner, or a ridge ® and a sharp corner are dis-
tinct, and require quite different processing. However, to an
isotropic grey-level morphological operator they are treated
the same. For example, an ‘L’-junction is like the top half
of a step edge turned on its end, and a sharp corner is inter-
preted in the same way as a ridge (figure 2). A morphological
operation suitably chosen to respond to the characteristics of
a ridge will also respond to a corner. Clearly, to use morpho-
logical operators successfully, we need to understand how the
surface is ‘seen’ by a morphological operator, and based on
this, interpret the response accordingly. We now show that
this behaviour has a direct interpretation in terms of the dif-
ferential geometry of the underlying surface.

*Here, a ridge is taken to be a location in a digital (not nec-
essarily intensity) image, where a simply connected sequence of
pixels have values significantly larger than their neighbours.
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Figure 2: A grey-level spherical structuring element
treats sharp corners like ridges

1.2 Parallel Surfaces

A surface Sy, defined by moving a distance r (the offset),
along the normal N to a smooth surface S, at each point of
the surface, is parallel to the original and has the form:

S“,.. =8S,+rN (2)

For every continuous surface there are an infinite number of
parallel surfaces each of which has the same surface normal
as the original (figure 3). Weatherburn (28] has shown that
a family of such parallel surfaces exists provided the curl of
the surface normal is zero. Our interest in this special math-
ematical surface derives from the fact that the dilation and
erosion of a smooth surface by a spherical structuring ele-
ments of radius p defines two parallel surfaces at distance £p
from the original. The set difference between the two gives a
set of surface boundary points which we call a smooth patch
(of strength 2p) and satisfies the following definition:

Smooth Patch:4 smooth patch is a connected set of points
in X that have two dimensional neighbourhoods in 3X such
that X is C' continuous (i.e. have continuous surface nor-
mal).

Even for a smooth surface, singularities in the parallel sur-
faces may exist. This will always arise for some value of p if
the curl of the surface normal is non-zero. For, let 1,2 be the
principal curvatures of the surface at a point (2o, ¥5). Then
the principal curvatures on the parallel surfaces at distance
+r can be shown to be:

B i e, Ml (3)
1Er = 1+rx,’ 2 = 1+rk;

We see that when one of the principal curvatures becomes
equal in magnitude to 1/, the curvature becomes infinite and
there is a singular point. A sphere of radius p = r, will ‘lose
contact’ at such points, and the set difference dilation-erosion
will be greater than 2p. Singularities in this case result from
characteristics of the operator and not the underlying surface.
Singularities arising from features of the surface (ridges and
step changes) give rise to singular curves C defined as follows:

Singular Curve C:A singular curve C of 8S is a connected
set of points z of 35S that have one dimensional neighbour-
hoods such that C is continuous (i.e. have continuous unit
tangent).

In a 3D polyhedral scene, singular curves correspond to
edges of objects without their end points. In intensity im-
ages, all 1D features (i.e. steps, ridges, valleys, thin bars)
are examples. To distinguish between these cases, (after all
image interpretation is the objective behind feature point de-
tection, [19]), we need to derive further constraints based on
the neighbourhood surface characteristics about the bound-
ary curve. One way to do this using morphological operations
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Figure 3: Parallel Surfaces: 1D profile showing two offset
curves and s1T cusps

Figure 4: A canal surface of spheres of constant radius

is by considering the surface generated by the dilation-erosion
difference transformation.

1.3 Canal Surfaces

A canal surface is defined as the envelope of a family of
spheres, which may have continuously varying radii, with cen-
tres lying on a smooth curve. The special case of the constant
radius canal surface can be obtained by sweeping a circular
cross-section along the curve (figure 4). Each sphere is-tan-
gent to the envelope along a circle, such a curve being a line
of curvature of the surface. This type of surface is also known
as a right circular constant generalised cylinder or a tube. We
can easily show that the dilation and erosion of a step edge
by a spherical structuring element gives two points that be-
long to a circle in the normal plane of the curve C. That is,
step edges are characterised by the generation of points that
lie on a canal surface of a boundary singularity curve under
the dilation-erosion difference operation. The same can not
be said to be true for a singularity curve arising from a ridge
(valley or sharp corner). We consider a way to describe the
surface geometry of these features using morphological trans-
formations in the next section.

The complete morphological boundary point categorisation
requires the definition of a singular point. '

Singular Point: Points of 3S that do not belong to a smooth
surface patch or singular curve are singular (Morse) points
of the boundary.

In a polyhedral world these correspond to object vertices.
In intensity images, ‘T’-, “Y’- and ‘W’- junctions are exam-
ples.

To summarise, boundary points of a surface can be defined
in terms of the set difference dilation-erosion to be of one of
three distinct types. That is a boundary point must lie ei-
ther in a smooth surface patch, or in a singular curve or be
a singular point. Defining a boundary detector in this way
proves a good way to find junctions and step discontinuities
in intensity images. For the detection of ridges, valleys and

sharp corners a different operator is required.
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2. Valleys, Ridges, Corners

A natural extension to the analysis given in the previous
section is to consider the effect of the opening and closing op-
erations on intensity features. We can visualise the spherical
opening operation as rolling a sphere under the surface and
only keeping points where the sphere touches the surface [25]).
The dual operation of closing rolls the sphere over the topside
of the surface. Figure 5a shows the spherical closing, opening
and their difference profile for a step intensity change. Evi-
dently the closing-opening difference is not a good measure
for boundary (or edge) detection because the requirement of
accurate boundary localisation (small p) conflicts with that
for good detection (p large). Applying the same transfor-
mations to a valley (or ridge) figure 5b, it is clear that the
effect is to give a maximum response at high surface curva-
ture points of the intensity profile. For an acute corner of
angle 26 (0 < 26 < 7) we see that for a given sphere radius
p the amount of the surface cut off is proportional to the
acuteness of the angle (roughly speaking the curvature (1),
and the minimum distance from the apex of the corner to
the opened surface is p(cosecd — 1) (figure 6). This suggests
that the closing-opening difference can be used for valley (or
ridge) detection and leads us to the following definition:

Ridge and Corner Detector: 4 morphological ridge (val-
ley) and sharp corner detector is sustably defined by the set
difference of the closing and opening of the image surface by
a spherical structuring element.

A ridge and sharp corner are similar entities as far as a
morphological operator is concerned, for in both cases the op-
erator responds to the singularity curve in the surface. The
essential difference is, that at an ‘L’-junction the maxima ap-
pear as an isolated peak. In the case of a ridge, we get a
series of such high responses giving a ridge-line. We can use
this difference in local topography to distinguish between the
two surface ‘events’,

3. Offsets and Blends

Offsetting operations, also known as expanding and shrink-
ing, have been used for a number of practical purposes includ-
ing collision-free path Planning, mould design and numerical
control (NC) machine tool design. For the case of a ball-ended
cutter, the tool centre traces a path at a constant distance
(called the offset) from the original. This defines a new paral-
lel surface (see section 2.1 ) parallel to this surface. It has the
same surface normal as the original, and for this reason this
process is also known as n-offsetting. We can define a set of
planar parallel curves for a 2D surface profile by n-offsetting

Ke-Xo
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Figure 6: Measuring curvature of a sharp corner using
continuous morphological operators

with a cylindrical (milling) cutter. Offsets of this type have
been studied in some detail particularly with regard to prob-
lems in regions of high curvature (2D or 3D) or at sharp
corners, where the profile followed may have a cusp and be
self-intersecting (figure 3). A number of heuristic algorithms
have been proposed to account for these special cases [27],
but there is no mathematical definition for piecewise smooth
parallel curves and surfaces.

Algorithms to enable blending facilities to be included in
dual-representation solid modellers containing both Compu-
tational Solid Geometry (CSG) and Boundary (Brep) repre-
sentations have been derived in terms of spherical morpho-
logical transformations [21). Offsetting operations, (shrink-
ing/expanding) are special cases of Minkowski addition and
subtraction and correspond to the morphological operations
of dilation and erosion with a sphere; spherical opening
and closing define the rounding and filleting (constant-radius
blending) transformations, Of course, in solid modellers the
underlying assumptions as to surface forms, imaging con-
ditions and overall goals are quite different from those in
computer vision. However, the major geometric problems
are common to both. How can we define representations for
boundaries or classify surface boundary points as belonging
to regions (faces), edges or junctions (vertices)? How do we
cope with interference of blends, and account for loss in detail
and incorrect termination of edges entering junctions? All
these problems stem from the inability to derive adequate
algebraic or geometric descriptions for the features we are
trying to model.

4. Results and Extensions

The algorithms described have been implemented in LISP
on a HP 9000 (Bobcat) using real images. A low ‘noise’
threshold of six pixels was used throughout (i.e. 2 pixel di-
ameter sphere plus an allowance for imaging-device and other
sources of noise of 2 pixels ). The digital sphere approxi-
mation has radius 1 pixel (i.e. 3 x 3 neighbourhood) and can
be represented in umbrae notation as:

U o1 0
1 1
[0 1 0]

(In this representation the values 1,0, -1 represent ‘on’ pixel
positions in top, middle and bottom layers of a 3x3x3 cube.)

4.1 Feature Detection

1. Fiﬁure 7 shows some of the different Jjunction types ex-
tracted using the dilation-erosion difference transformation
on the first frame of the Plessey widget sequence [7]. The
new surface defined by this transformation we call the bound-

ary surface(z,y, k], where k is the boundary strength and z,y



have their usual meaning. Boundary points appear as clearly
defined ridges and junction information remains explicit.

2. Figure 8a shows the boundary surface for an acute corner
taken form the same widget image. The closing-opening dif-
ference transformation response is shown in figure 8b. The
peak response agrees with the theoretical prediction given in
section 2.

4.2 Image Descriptions

3. Although this paper is not concerned specifically with
extracting ridges and contours from the boundary surface,
to illustrate the relative robustness of the general boundary
detection technique we compare qualitatively the output of
a simple morphological ridge detector with the Canny op-
erator. Figure 9 shows a complex scene (both in terms of
intensity structure and noise). Figure 9a shows the result of
applying the spherical opening-residue transformation [15] to
the boundary surface. A Canny output on the same image is
shown in figure 9b. Canny derived his optimal straight edge
operator using variational calculus techniques. The principles
behind the morphological boundary detector are quite differ-
ent and based on preserving the connectivity in grey-scale
images. Bearing in mind that there is no explicit smoothing
or an edge-linking process and the current implementation is
single-scaled, the morphological result compares favourably
with the Canny response. Where the morphological bound-
ary detector comes into its own is at image junctions and in
highly curved regions where clearly the step edge assump-
tion does not hold. Evidently, there is considerable room for
improvement on the current implementation. We intend to
report on studies of noise analysis and more sophisticated
ridge detection/structural filtering methods [20] in a sequel
to this paper.

4. Figure 10 illustrates the result of applying the bound-
ary/ridge algorithms to the first frame of a hand motion se-
quence. The boundary surface response (figure 10b) is dis-
played as intensity; namely, a large response is displayed with
a darker value. Edges and junctions in the original grey-level
image appear as distinct ridges and peaks in the boundary
surface. That is, morphological transformation has enhanced
topological structures in the image. This example has been
chosen to illustrate two distinguishing features of the bound-
ary surface representation. First, the cusp between the thumb
and first finger gives an abruptly terminating boundary end.
This would not be detected by a normal edge or region detec-
tor, since edge detection algorithms generally ‘follow’ closed
connected edge contours while region-based detectors do not
allow for internal boundaries.

There is a close relationship between gradient-based edges,
and the projection of the ridge lines onto the (z,y) plane.
These give information about the spatial relationships be-
tween objects. The ridge lines can be thought of as 3D space
contours in the boundary surface domain and provide a dif-
ferent type of image description. An interesting question is,
can the variation of boundary strength along these contours
(as along the fingers) be used to infer additional informa-
tion about the bounded surfaces? Nackman [16] has shown
this is true in theory for smooth surfaces. This behaviour
has been shown to be useful for describing images [9], and
as the radius function of a three dimensional symmetric axis
[17]. The key point is that singularity curves provide infor-
mation about more than one type of change in the original
image. The type of boundary information we chose to use
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(ridge projection, ridge-lines or both) will be determined by
vision task. Whether and how we can use this information
to augment normal edge-based image descriptions suggests a
further direction for investigation.

The fact that topological descriptors can be derived from
the boundary surface representation suggests morphological
processing may be suited for providing topological matching
constraints for use in higher vision reasoning. For example, it
is well known that a major weakness of many current stereo
and motion correspondence schemes is that ambiguities are
made more severe by added and missing information due to
noise, occlusion and errors in the input map - which is most
noticeable in highly curved regions and at image junctions.
Also, in line drawing interpretation, despite much activity di-
rected towards (geometrically) cataloguing junctions of both
polyhedral and curved objects (for example [3,11,26]), results
on real edge data have been disappointing. The lack of ro-
bustness of these schemes to improperly classified and missing
junctions remains a major source of frustration. Qur exper-
imentation seems to indicate that morphological techniques
offer a possible methodology to provide reliable junction in-
formation. We hope to report on morphological junction clas-
sification using real data in future work.
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Figure 7: Morphological Boundary Detection of the ver-
tices of a widget: (a) ‘Y’ junction, and (b) ‘T’ junction.
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Figure 8: (a) Morphological boundary detection response
at a sharp corner (b) Corner detection using the clos-
ing-opening difference transformation
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Figure 9: ‘Widget Revisited’:(a) Morphological Edge Response;(b) Canny output

Figure 10: Hand Image: (a) Original image with boundary points superimposed; (b) Boundary surface
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