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We ezamine the information available from the mo-
tion of specularities (highlights) due to known move-
ments by the viewer. In particular two new resulls
are presented. Firstly, we show for local viewer move-
ments the concave/conver surface ambiguity can be re-
solved without knowledge of the light source position.
Secondly, we investigate what further geomelrical in-
formation 1s obtained under extended viewer move-
ments, from tracked motion of a specularily. We
show the reflecting surface is constrained to coincide
with a certain curve. However, there is some ambigu-
ily - the curve is a member of a one-parameter fam-
ily. Fizing one point uniquely delermines the curve.

1 Introduction

One of the aims of computer vision is to extract concise
surface descriptions from several images of a scene. The
descriptions can be used for the purposes of object recog-
nition and also for geometric reasoning (such as collision
avoidance). Stereo vision determines depths at surface
features (such as edges and creases), often only sparsely
distributed. It cannot yield full information on surface
shape.

Ambiguity arises when the distribution of surface ele-
ments is very sparse. This is common with smooth, es-
pecially man-made, objects. Typically the only visible
surface features will be contours, (steps or creases) be-
tween adjacent surfaces. Apart from at contours, sur-
face shading varies smoothly, making stereo correspon-
dence difficult. But judicious analysis of surface shading
can considerably augment the geometric information ob-
tained directly from stereo vision.

TIkeuchi ! has described methods of finding the surface
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normal (and hence the depth) at every point of a smooth
surface by using the shading and a bounding stereoscop-
ically viewed contour. However, “shape from shading”
algorithms of this type depend on having precise pho-
tometric information about the light source and surface
reflectance properties. This is not possible, except in a
strictly controlled environment.

An alternative is to use more qualitative methods which
do not return the depth at every point 2. There are a
number of shading cues which can provide robust and
reliable information about surface shape and source po-
sition. For example, specularities (highlights), shadow
boundaries and self-shadowing can yield considerable in-
formation on local surface curvature and source position.
Similarly extremal boundaries constrain the local curva-
ture of the surface (specifically the Gaussian curvature)
and extrema of intensity can be related to surface char-
acteristics 3.

In this paper we address the question:

What information is available from observ-
tng the movement of specular points in two or
more images for known viewer motion?

Here we are not concerned with the detection of specu-
larities %6 and no surface reflectance characteristics are
assumed %678 other than the simple mirror condition.
Where necessary we assume a point light source. This is
not a restriction because if the source has finite extent
then the brightest point of the specularity can be used.
We do not use the information contained in the shape or
intensity profile of the specularity 391°. Section 2 is a
brief review of two approaches for deriving surface shape
from the movement of specularities.

Two new results are presented: In section 3 we describe
a simple test which resolves the convex/concave ambi-
guity. All that is required is two views of the scene and
an estimate of viewer-surface distance. No knowledge of
the light source position, or surface slant is needed. Ex-
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amples are given in section 4. In section 5 we show that
extended viewer movements (where the specular point is
tracked through many images) constrain the reflecting
surface to coincide with one member of a one-parameter
family of curves. If the curve passes through a known
point on the surface, then the ambiguity is removed and
the curve uniquely determined.

2 Motion of specular points

Koenderink and Van Doorn 3 give a qualitative descrip-
tion of the movement of specularities as the vantage point
changes by considering the Gauss map of the surface.
Using this analysis it is clear that the velocity of the
specularity is less if the curvature is high (it depends on
the Weingarten map of the surface - the differential of
the Gauss map), so that “(specularities) tend to cling to
the strongly curved parts”; and also that specularities
are created or annihilated in pairs at parabolic lines on
the surface, and move transversely to the lines at their
moment of creation. This approach is valid provided the
distance of the viewer from the surface is much greater
than the largest radius of curvature.

Local metric information (constraints on the surface cur-
vature) can be obtained from 2 views ° provided the po-
sition of the light source and of a surface feature (close
to the reflecting point) are known. The 2 views might
be a stereo pair or from a moving monocular observer.
In either case the baseline is assumed known and surface
features can be matched using the epipolar constraint.
The specularity will move relative to these surface fea-
tures. The constraints on surface curvature are contained
in the Specular Motion Equation °. This is a linearised
relation between the change x = (z1, z2) in the position
of the specularity in the tangent plane of the surface,
and the (small) viewer movement d = (dy,da,ds). The
linear system can be expressed as '

2V(MH — kyp)x = w, (1)
where
w = (—d; + dstana,—d;)7,
s ( sece 0 ) ,
0 coso
and

The coordinate frame is the local normal frame, where
the origin lies on the surface (at the reflecting point), and
the z-axis is along the local surface normal. It is arranged
so incident and reflected rays are in the 2z plane, and the
movement of the specularity is in the zy plane - the local
tangent plane. The angle of reflectance is 0. Vectors V
and L are vectors from the origin to the viewer and light
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source (V = ||V|| and L = ||L||). The Hessian matrix H
is the matrix of second partial derivatives of the surface

Z(x, y)‘
vy

In the normal coordinate frame the eigen-values of H are
the principal curvatures of the surface.

This linear approximation is valid if the baseline is rela-
tively short, that is, when

lldll < [IVllcos o,

and provided the surface does not focus incoming rays
to a point or line close to the centre of projection.

3 Local viewer movement

We describe a simple test, making minimal assumptions,
for distinguishing between convex and concave surfaces.
Loosely, we show that on a convex surface the specularity
moves with the viewer (sympathetic motion), whereas on
a concave surface the movement is (in general) against
the viewer motion (contrary motion). You can convince
yourself that this is true by looking at specular reflections
in the front and back surface of a spoon. The terms
“moves with” and “moves against” the viewer motion are
made precise in the following theorem (which is proved
in the appendix)

Theorem 1 If H is negative definite (surface locally
convez elliptic) then d; .x; > 0. If H is positive definite
(surface locally concave elliptic) and the smallest princi-
pal curvature k satisfies K > secokyy then dy.x; <O0.

Here, d; and x, are the projections of the vectors d
and x onto the plane perpendicular to V. Their calcu-
lation is described below. Because other surface shapes
are possible (for example hyperbolic) where the scalar
product could have either sign, it is the corollaries that
provide the useful tests:

1. If dj .x; < 0 (“contrary motion”) then the surface
s notl convex.

2. If dy.xy > 0 (“sympathetic motion”) then the sur-
face is not concave, unless one of the principal cur-
vatures is less than sec oky .

The first test shows it is always possible to determine if
a surface is not convex.
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Figure 1: Specularity Geometry. The viewer moves be-
tween points C and D. The specularity moves (in the
tangent plane of the surface) between A and B. The vec-
tors V and W are the reflected rays at A and B.

Calculation of d, .x;

Using the geometry shown in figure 1, we have the simple
vector cycle:
V4+4d-W-x=0

The projected vectors are

di = d=(@nv
x1, = di-W, (2)
= d,-WU

where U = W—(W.V)V, and V indicates a unit vector.

Hence,
d_L.xi=|d_j_|2—W(dl.U) (3)

To calculate the scalar product then, involves only know-
ing the viewer motion (d), the directions of the reflected
ray in each view (V and W), and an estimate of the sur-
face distance W. The important point is the test does
not require any knowledge of the light source position,
or the surface slant. The estimate of the viewer-surface
distance can be obtained, for example, from a nearby
surface feature (whose position can be measured using
binocular stereo). It is worth noting that in the coor-
dinate frame defined by the triad {al,\‘r Ady,V} the
length d; .x, is the epipolar (horizontal) disparity.

4 Errors in convex/concave test

The test only involves the sign of the scalar product.
However, the magnitude can be used to gauge the im-
munity to errors.

The important question is how sensitive is the sign of
the scalar product to the estimate of W7 It is clear from
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Figure 2: Projected vectors in the plane perpendicular to
V. It is clear that if the magnitude of W (and hence
W ) varies, the scalar product dy.x, can have either
sign.

equation (2) and figure 2 that the scalar product will
always change sign eventually as W varies. From (3) the
sign change occurs at Wy, where

|dy|?
d,.U
|d.|?

— —

w.dy

Wo =

The error in this estimate is given by

Wy = 3“.’“ 6V + Wo sy
v oW

where §V = (error in V perpendicular to V)/||V]|, and
it is assumed that the error in d is negligible.

Provided the estimate of W is outside the range (Wy
8Wy) we can be confident in the sign of the scalar prod-
uct.

Results of convex/concave test

The results of applying this test to the image pairs shown
in figures 3-5 are tabulated in table 1.

For the computation, the specularities are detected us-
ing Brelstaff’s specularity detector and matcher 4; the
estimate of W is obtained from the distance to a surface
feature close to the specularity. This distance is deter-
mined by the PMF binocular stereo algorithm 12, The
error estimates for V. and W are based on an error of
i% pixel in localising the brightest point of the specular-
ity in the image. In all cases (see table 2) the estimate
of W falls outside the region (Wj & §W) so we can be
confident that the sign of the scalar product is correct.



Table 1: Scalar product and interpretations.

Figure Description d;.x; | Interpretation
3 convex ellipsoid 0.024991 | not concave
4 concave ellipsoid | -0.021369 not convex
5 beach ball 0.001497 | not concave

Table 2: Viewer-surface distance estimate and safety
margins.

Figure w Wg ts]vV()
3 10.574994 | 10.799026 | 0.037323
4 10.632490 | 10.447312 | 0.028527

5 0.900474 | 0.964750 | 0.000453

The first two pairs of stereo images (figures 3 and 4)
are computer generated, using a narrow field of view to
exaggerate disparities. This makes it easy to see rel-
ative displacement of specularities. Figure 3 shows a
convex surface with a stereoscopically visible specularity
and nearby surface markings. Note that the displace-
ment of the specularity (relative to surface markings) is
in the same direction as the relative displacement of the
optical centres of left and right views. That is the motion
of the specularity is sympathetic (d, .x; > 0). Figure 4,
however, shows a concave surface and, as expected, the
relative displacement of the specularity is reversed, op-
posing the motion of the viewer (dj.x; < 0). Figure 5
is a real image of a beach ball (convex), and again the
motion of the specularity is sympathetic (dy.x; > 0).

5 Global viewer movement

In this section we describe what information is available
from extended or continuous viewer movements, where
the information from many views is combined.

We prove the following theorem:

Theorem 2 Given a source of light S (or a direction
of light from infinily), and for each poinl r on a curve
in R3, given the direction of a reflected ray through r
(the reflection being from an unknown reflecting surface
M ) then this determines a unique curve m (the locus of
the reflecting points) on M provided one point on m 1s
knouwn.

The proof is given in the appendix.
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Thus, given a fixed light source and surface, and ob-
serving the direction of the reflected rays as the viewer
moves, uniquely determines a curve on the reflecting sur-
face. Without a known point r there is ambiguity, as
the curve is only determined by the directions of the re-
flected rays to lie in a one parameter family. If a point is
known on the curve, the ambiguity is removed and the
curve uniquely determined. The required point r could
be found where the curve m crosses an edge, whose po-
sition is known from binocular stereo.

The surface normal is also known along m. This places
strong constraints on the local surface curvature. Fur-
thermore, by making a second movement that crosses
the original path (so that the paths are transverse, and
both transverse to the reflected rays) we obtain trans-
verse curves on the reflecting surface. At the point where
these curves cross the surface curvature ( principal curva-
tures and direction of principal axis) is completely deter-
mined. We are currently exploring the type and extent
of the constraints placed on the surface by curves of this
type.
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Figure 4: Concave surface of an ellipsoid with surface markings (artificial tmages).

Figure 5: Beach ball of 12¢m radius.
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Appendix

Proof of Theorem 1

The vectors x; and d; are obtained from x and d using
the projection matrix P~!, where

_( seca 0 —1_ [ coso 0
P_(O 1) andP-(0 1)

We have
d, = —Plw

Using the Specular Motion Equation (1)

x, = P 'x

P 12V(MH — ky  I)P(P™'x) = —d,
and hence
d;.x; = =2V(P~'x)T [P~Y(MH — kv I)P] (P~'x)
This is a quadratic form
dy.xy = -2V(P 'x)TQ(P'x)

The sign depends on the eigen-values of Q. Noting that
M = cosaP?

Q =coscPHP — NVLI

Now, det(PHP) = sec? o det(H), and considering the
trace of PHP or noting that (0,1)PHP(0,1)T =
(0,1)H(0,1)T, proves PHP is positive (negative) defi-
nite as H is positive (negative) definite.

We consider the two cases:

______

Figure 6: The curve wy is perpendicular to the reflected
rays. It lies on a possible ortholomic surface of the mir-

ror M relative to the light source S.
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1. H negative definite
@ is negative definite, hence dj .x; > 0.

2. H positive definite

A lower bound on the smallest eigen-value of PH P
is given by xq, where k; is the smaller eigen-value
of H. @ will have a negative eigen-value if an eigen-
value of PHP is less than sec okyr. However, pro-
vided k; > secokyr, @Q is positive definite, and
d; .x; <0.

Proof of Theorem 2!

The reflected rays are all normal to the orthotomic W
of M relative to S (The orthotomic !3 is the locus of
reflections of S in tangent planes to M). Choose any
point ¢ on the reflected ray (see figure 6). There is a
unique piece of curve w; through g perpendicular to all
the reflected rays through points p. This curve w; is on
a possible orthotomic surface W; through gq.

Taking perpendicular bisector planes of segments joining
S to points t of w; gives a 1-parameter family of planes
which are tangent to a possible mirror M;. For each t
the intersection of the perpendicular bisector plane with
the reflected ray through ¢ determines a point on M.

Ience, the choice of ¢ determines a curve m; on a possi-
ble mirror M;. Changing ¢ will change w; and hence my,
so ¢ can be adjusted until m; passes through a known
point on M. Thus, provided such a known point exists
the curve and the surface normals along the curve are
determined.

1The proof is slightly modified if the light source is at infinity.



