
POLYHEDRAL OBJECT RECOGNITION WITH SPARSE DATA IN SIMD PROCESSING MODE

by Derrick Holder* and Hilary Buxton

Queen Mary College, London.

contour, shading and texture, structured light and active
range finder measurements.The method ofGrimson, Lozano Perez and others, for the

recognition of polyhedral objects with sparse data, has
been developed and implemented on a distributed array
processor, the AMT DAP 500, which operates in SIMD
mode. Measurements involving the location vectors and
the surface normals at m data points, considered in pairs,
are compared with the corresponding maximum and
minimum values associated with nxn pairs of object
model faces, in a process that exploits nxn parallelism.
The overall processing time is essentially proportional to
mx(m-l)/2, to explore the interpretation tree to its full
depth.

This paper discusses the nature of the comparisons
between object models and data, together with the need to
make these comparisons in a particular sequence, and
results of test runs with a variety of object models and dif-
ferent geometric constraints are presented herein. Com-
parison is made with the corresponding sequential pro-
cess, and with the more costly method of Flynn and
Harris, in which nm processing elements are required to
achieve, at best, a processing time of the same order of
magnitude.

INTRODUCTION

In many applications the key task for a robot's vision sys-
tem, according to Murray and Cook1, is "to supply the
control unit with a quantitative and symbolic description
of its surroundings: in other words, tell the robot what is
where in the scene being viewed."

Grimson and Lozano-Perez2 describe the problem, with
regard to polyhedron objects as follows:-

"To identify an object from among a set of known objects
and to locate it relative to the sensor. The object sensed is
assumed to be a single, possibly non-convex, polyhedral
(for which we have an accurate geometric model). The
object may have up to six degrees of freedom relative to
the sensor (three translational and three rotational). The
sensor, which could be tactile or range, is assumed to be
capable of providing three-dimensional information about
the position and local surface orientation of a small set of
points on the object".

With geometric object model descriptions stored in a
database, the robot is confronted with geometric (shape)
data from low level vision sources such as binocular and
photometric stereo, structure from motion, shape from

We start with the premise that, on the basis of sensor
readings, the positions of some points on the surface of
the object in question can be determined to lie within
some small volume in space relative to the sensor, and
that the direction of surface normals at these points can be
recovered to within a cone of uncertainty. Our goal is
then to use this information to determine the location and
orientation of an object that is consistent with the sensed
data.

The general approach to the problem is first to generate
feasible interpretations by means of simple, generally
pairwise, geometric comparisons between data and object
models, and then to test the feasible interpretations, in
detail, for compatibility with the surface equations of a
particular object model. An interpretation is valid if, and
only if, it is possible to solve for a rotation and translation
that would place each data point sufficiently accurately on
a surface of a particular object. If no match is found, i.e.
there are no consistent position and orientation to be
found, a particular object is excluded from the investiga-
tion. The shortlisting of feasible interpretations is of the
utmost importance because, given m data points to be
matched against a polyhedral model with n faces, the
number of possible interpretations is n to the power m,
and it is clearly not a viable proposition to do the detailed
model calculations for every one.

A number of sequential algorithms, with regard to
polyhedral object recognition, have been implemented by
different authors, but they are not generally fast enough to
offer a practical solution to the problem. The aim of the
present authors has been to implement the methods of
Grimson and Lozano-Perez, and others, with efficient
parallel algorithms. The implementation is on a distri-
buted array processor, the AMT DAP 500, which
operates in SIMD (single instruction - multiple data)
lockstep mode.

GENERAL CONSIDERATIONS.

The generation of feasible alternatives proceeds as
follows:-

For each data point, or pair of data points, we con-
sider alternative assignments to the faces of a par-
ticular object model. The alternatives may be
recorded in an interpretation tree, with each node
representing a single assignment and the alternative
paths representing the sequences of assignments

"The first author in on leave of absence from City of London Polytechnic.

103

AVC 1988 doi:10.5244/C.2.16



embodied in alternative interpretations of the data
set

The pairwise geometric match between the data
and a given object model is then investigated, and
the interpretation tree is pruned accordingly. A
geometric match is said to be achieved when the
values of certain primitives, such as the distance
between two points and the angle between two sur-
face normals, associated with a given pair of data
points are compatible with the geometric constraint,
or ranges of values, associated with a particular
pair of object model faces.

The trial assignment to object model faces of the
pair of data points associated with a given
geometric match is then checked against the assign-
ments made at higher levels in the interpretation
tree. The need to do this arises because a data point
cannot sensibly be assigned to more than one sur-
face, if we exclude measurements at the intersec-
tions between surfaces with ambiguity in surface
normals.

The term "consistent match" is coined herein, to describe
the situation where a pairwise geometric match is con-
sistent with the assignments made at higher levels in the
interpretation tree, and this provides a basis for further
substantial pruning of the interpretation tree.

With a sequential processor, it is absolutely essential that
the interpretation tree is pruned, as soon as it is esta-
blished that the interpretation of a subset of the data is
found to violate the model constraints. For example, with
eight data points to be matched against a dodecahedron
there are 429,981,696 alternative interpretations to be
considered. To make matters worse, there are 56 possible
relationships between pairs of data points that may be
tested against the corresponding relationships between
144 pairs of object model faces, producing 1.64xlO120

nodes down to level eight in the interpretation tree!

Even with inconsistent interpretations eliminated, i.e.
those which associated any given data point with more
than one object model face, but with no other pruning,
there would, in this example, be over ten hours of pro-
cessing to do at a processing rate of one tenth of a mil-
lisecond per comparison, say, for a single object.

With a parallel processing facility there is scope for a
substantial reduction in overall processing time from data
capture to object recognition, but the size of the unpruned
interpretation tree remains a problem, in that it is likely to
place a totally unacceptable demand on memory require-
ment.

However, we note that the sub-tree from nodes at a par-
ticular level in an unpruned interpretation tree are
independent of the path from the root to those nodes, and
will be reproduced many times over. The initial com-
parison between the data and a particular object model
may then be represented by a network, and stored more
efficiently in an array.

The network approach lends itself to parallel processing
in which all of the alternative interpretations of the rela-
tionships between a particular pair of data points, i.e. the
entries in a given row of the array, are tested in parallel.
This is in stark contrast with the approach of Flynn and
Harris3,in which separate processors are allocated to each
one of the alternatives in an internally consistent, but oth-
erwise unpruned, interpretation tree. For 250 objects,
each with 10 faces, and three data measurements they use
250,000 of the 256,000 processors available on the MIT
Connection Machine, and their requirement for proces-
sors would increase by a factor of 10 with each additional
data point!

Murray4, Grimson and Lozano-Perez and others have
observed that the efficiency of interpretation tree pruning
is improved when data are presorted so that the most
effective pruning occurs near the root of the tree. They
have found that sorting on the basis of pairwise separation
avoids a combinatorial explosion, and substantially
reduces the size of the interpretation tree.

In test runs with an object model representing an electri-
cal plug with 27 faces, 14 of which were visible in a
given view, and with 56 sorted data points at which meas-
ured normal directions were accurate to within 0.05 radi-
ans, Murray managed to arrive at a unique interpretation
out of 1080 possibilities, after just 108 pairwise comparis-
ons between object model and data. 1614 comparisons
were required with unsorted data, and we note that even
the hardware intensive approach of Flynn and Harris
might well have involved 1540 steps before reaching a
conclusion.

However, it may be argued that the separation of data
points will not always be the most significant measure
with regard to the effective pruning of the interpretation
tree; for example, a strangely oriented face such as at the
damaged corner of a chipped brick might well provide the
most important key to the solution of the problem. For-
tunately, there is no need to prejudge the issue, because
the recognition method that is described herein lends
itself to a much more flexible approach. The most effec-
tive constraints are likely to be reflected in a relatively
small number of geometrical matches between an object
model and the data, and it is a simple matter to sort the
data into ascending order of geometrical matches, before
launching into the recursive procedure that checks for
consistent assignments of data points to object model
faces.

Grimson and Lozano Perez considered both visual and
tactile data, but the emphasis in the present work is on the
analysis and interpretation of data from photometric
sources alone. Even with a multiple camera system, such
data will not normally be available for every surface of
the object that is being viewed, and we find that the
absence of data with regard to hidden surfaces may cause
problems in distinguishing between similar objects such
as cuboids and parallelepipeds. We are then obliged to
look for the most likely interpretation of a scene, perhaps
with a fairly subjective ordering of the object model alter-

104



natives from which the choice is to be made.

Murray has concentrated on shape data alone, without
absolute size. Working with optical flow data, he has
observed that the precision of size information is often
poor, unless an active range finder or some very high
accuracy stereo ranging system is used, and that it is fre-
quently necessary to recognize classes of objects of simi-
lar sizes. He maintains that shape data are highly effective
in constraining the search space of matches to stored 3D
object model. However, there is no need to prejudge the
availability and quality of size information here, because
it is possible to develop and implement the algorithms
required for interpretation quite separately from the
object model descriptions and the data involved in the
matching process.

A SIMPLE EXAMPLE

Consider the two-dimensional object shown in Figure 1.
We shall call it a flag, but the real world interpretation
does not matter. We are only interested in the generation
of feasible interpretations at this stage, and these will be
considered in terms of abstract relationships between the
sides of the object. Nor does it matter that we are looking
at a two-dimensional object when we are really interested
in the problem of object recognition in a three dimen-
sional world. In two dimensions we consider edges, the
sides of a polygon, in three dimensions surfaces, the faces
of a polyhedron. Furthermore, it does not really matter at
this stage whether we are dealing with visual or tactile
data; the algorithms are essentially the same.

Suppose that the flag is described in terms of the direc-
tions of the outward normals at the edges, and that the
directions of outward normals have been measured at four
points, to within ±7V4 degrees. The orientation of the flag
is unknown, so we can not compare the measurements
directly with a description of the flag to establish which
sides should be associated with particular data points. We
have to look at the differences between pairs of measure-
ments, and consider whether they are consistent with the
proposition that given pairs of sides are associated with
particular pairs of data points.

ure 2, and it can be seen that the three subtrees from the
level 2 nodes at which a match has been achieved
between model and data are exactly the same. The tree
has been pruned wherever the relationships in the object
model fail to match those in the data, but there has been
no backtracking to ensure that points have been assigned
consistently to particular object edges.

data
points

object model edges

1 2 3 4 5

A A A A A
12345 12345 12345 12345 12345

1 2 3 4 5

A A A A A
12345 12345 12345 12345 12345

1 2 3 4 5 2 3 4 5

AAAAA /AAAAA/12345 12345 12345 12345 12345 / 12345 12345 12345 12345 12345

1 2 3 4 5

AAAAA
12345 12345 12345 12345 12345

Figure 2 - The Interpretation Tree for the Flag

The same information is stored more compactly in an
array, in Table 1, where we note that all paths downwards
through true values must be explored.

1 2

I 3

1 4

2 3

2 4

3 4

1 2 3 4 1

1 2 3 4 1 1 2 3 4 ! 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1

T

T T

T T

T T T

T r T.

90'

80

Figure 1 - The Flag with Four Data Points

The interpretation tree for this problem down to level 3,
i.e. for the first three data relationships, is shown in Fig-

Table 1 - The Matching Array for the Flag

It is immediately evident from Figure 2 and Table 3 that
the data points D1 and D2 are associated with edges £ 3

and E2, respectively (the order may be reversed if we
allow the flag to be turned over). Considered in isolation,
Dx and D 3 might be associated with £ 3 and E5, respec-
tively, or with E4 and E2 or E5 and £ l f but we have
already assigned D j to E3 and, to be consistent, we must
now assign D2 to £5. Similarly, when we consider the
relationship between Dj and DA, we quickly establish
that DA must be assigned to EA and the interpretation is
complete. We note that the remaining two relationships
between the data points merely serve to echo the interpre-
tation, without really providing any additional data.

105



There is no information for the location of the data points
to be determined more precisely, or for the validity of the
interpretation to be confirmed more rigorously, but the
orientation of the flag may be established with reference
to the directions of the normals at the separate data points.

Incidently, if the margin of error in the measurements was
as much as ± 10 degrees, the interpretation would no
longer be unique.

THE GEOMETRIC CONSTRAINTS IN THREE
DIMENSIONS

There is an obvious ambiguity in the two-dimensional
example described above, because all of the angles are
reversed when the flag is turned over, and the problem is
compounded in three dimensions. When the signs of the
angles are included in two-dimensional object model
descriptions, they may be inconsistent with the signs
observed in the data, but spurious interpretations may be
introduced when these signs are disregarded. Further-
more, when we consider the equivalent constraint in three
dimensions, the direction of the unit vector associated
with the angle between two surfaces is ambiguous. If this
is disregarded, there may be such a proliferation of spuri-
ous interpretations as to render the recognition process
useless, without the inclusion of additional constraints.

A distance constraint, i.e. a comparison of the distances
between pairs of data points against the maximum and
minimum values associated with pairs of object model
faces, in addition to the angle constraint, does little to
alleviate the problem. What is required is a set of con-
straints that completely exploits the information that is
available, in a manner that is independent of the global
coordinate frame of reference.

One way to get coordinate-frame-independent constraints,
with regard to data points considered in pairs, according
to Grimson5, is to construct a local coordinate frame rela-
tive to the data points, and this may be done with the unit
normals to the surfaces at the two points, and the unit
vector in the direction of their cross product, used as axes.
Given such a local basis, one set of coordinate-frame-
independent measurements is provided by the com-
ponents of the separation vector d along each of the three
directions defined above, together with the unsigned
angle between the two normals n t and n2.

We thus obtain:-

d.n2

and

as a basis for comparison between object model and data.

THE RECOGNITION ALGORITHM

The recognition processes described in the example are
applied to three-dimensional objects, and formalised in a
fairly obvious notation, as follows:-

scan{\)

procedure scan{i)

for object Jace\ := 1 to n
cleari := face[datum\[i\] = 0
it clear i then face[datumi[i\] := objectJace \
for object Jace2 := 1 to n

clear i :=/ace [datum 2[i]] = 0
if cleari then/ace[flattwn2[i]] := objectJace2

{consider geometric match between
data and object model faces}
match[object_face\,objectJace2,i] :=

model[obje ctJace ifibjectJace 2] = data[i]
{check for consistent assignment of
data points to object model faces}
consistentjnatch :=
match[objectjace i ,objectjace2,i\
and {objectJace \ = face[datum\ [i]])
and {objectJace2 = face[datum2[i]])

if consistent jnatch then
if i<mpairs then scan{i+1)
if i=mpairs then report Jnterpretation
{prepare to backtrack for
alternative interpretations}
it clear i then face [datum i[i]]) :=0
if clear 2 then face [datum 2[i]]) := 0

endif
endfor

endfor

By far the most important single step in our quest for
parallelism, remembering that the geometric matching
process is totally independent of the preceding partial
interpretation, is to deal with that part of the algorithm
once and for all, before entering the recursive procedure.
The process translates conveniently into:-

DO 10 i= l,mpairs
match(,,i) = ...
icount(i) = SUM(match(,,i))

10 CONTINUE

in DAP FORTRAN, with all of the possible matches
between the object model and a particular pair of data
points computed in a single matrix assignment.

A simple tag sort procedure may then be used to sort the
data pairs into ascending order of geometric match.
Using the MTNP function in DAP FORTRAN, which
returns a logical matrix with true value(s) corresponding
to the minimum value(s) of the argument, and ELN,
which returns the index of the first true value of the
matrix regarded as a long vector, a tag sort may be imple-
mented as:-

106



DO 20 i = i,mpairs
k = ELN(MINP(icount))
itag(i) = k
icount(k) = 9999

20 CONTINUE

although a process known as bitonic sort would be margi-
nally more efficient.

Although at any stage the check for consistency is then
dependant on the preceding partial interpretation, it can
be performed as a parallel process within the recursive
procedure. The subsequent assignments of data points to
object model faces can then be made conditional on the
outcome, with a construct of the form -

while any consistent match do ...

replacing the nested do loops.

There is no WHILE statement in DAP FORTRAN, but
there is an ANY function that returns a true value, pro-
vided that at least one element of a logical argument is
true, and we may implement the construct with successive
true values of consistent_match identified by ELN,
switching values to false as soon as they have been pro-
cessed.

Thus, with matrices object_facel and object_face2 set up
with every column of object_facel containing the row
number, and every row of object_face2 containing the
column number, we obtain:-

SUBROUTINE scan(iparam)

i = itag(iparam)
clearl = (face(datuml(i)).EQ.O)
clear2 = (face(datuml(i)).EQ.O)
consistent_match = (matoh(,4)
.AND. (clearl.OR.(face(datuml(i)).EQ.object_facel))
.AND. (clear2.OR.(face(datum2(i)).EQ.object_face2)))
GO TO 20

30 k = ELN(consistent_match)
consistent_match(k) = .FALSE.
face(datuml(i» = object_facel(k)
face(datum2(i)) = object_face2(k)
IF (i.LT.mpairs) CALL scan(iparam+l)
IF (i.EQ.mpairs) CALL report
IF (clearl) face(datuml(i)) = 0
IF (clear2) face(datum2(i)) = 0

20 IF (ANY(consistent_match)) GO TO 30

The processing within the loop is of a sequential nature,
but this seems inevitable if the demands on processing
elements are to be kept within reasonable bounds.
Nevertheless, highly effective pruning of alternative
interpretations is thus achieved, because the
consistent_match matrix is generally very sparse. The
ANY and ELN functions are efficiently implemented in
DAP FORTRAN, and the loop contains only a few simple
assignments.

THE METHOD OF FLYNN AND HARRIS

Although the method of Flynn and Harris makes enor-
mous demands on the hardware, it avoids the need for
recursion and provides a yardstick against which the
present method can be evaluated, at least for simple
objects with just a few data points. Their method is sum-
marised in the algorithm below.

ntotal :=nm

for i:=l to m
samej:= n'"1

/:=0
for j:=l to ntotal in steps of samej

fork:=l to samej'
temp [j+k-1] : = /

endfor
face [J] := temp

endfor
endfor

match := true
for i:=l tom-1
forj:=l torn

match := match
and (model [face [,,i]/ace [, j]] = data [i j])

endfor
endfor

while any match do
report interpretation

endwhile

We note that m represents the number of data points, not
the number of pairs of data points, and that
objectJace[,,i], i:=l to m, is a matrix of up to 1024 pos-
sible interpretations with regard to a particular data point,
on a 32x32 DAP (if njotal > 1024, e.g. n=8 and m>3 or
n=5 and m>4, the face and match matrices must be parti-
tioned).

Unfortunately, the use of matrices as mapping functions,
for the purpose of indirect addressing, is not provided for
on the DAP. It is necessary to form look up tables in
serial mode, one for each constraint for each pair of data
points, before embarking on the comparison, perhaps with
several sets of data. The comparison then becomes

match := true
ijpair :=0
for i:=l to m-1
forj:=l torn
ijpair := ijpair + 1
match := match and (mo<fe/[,,ijpair] = data[i,]\)

endfor
endfor

and this is easily translated into DAP FORTRAN.

107



TEST RESULTS

Figure 3 - The L Shape

Early test runs with the L shaped object model illustrated
in Figure 3, with one data point on each visible face, pro-
duced some encouraging results. The program returned
the original interpretation, together with its mirror image
in the plane of symmetry, with a linear variation in run
times, with respect to the cumulative number of con-
sistent matches between pairs of data points and object
model faces. Furthermore, there was a significant benefit
when the data pairs were sorted into ascending order of
geometric match, with run time being reduced from
14.8ms to 7.8ms. The run time with data pairs sorted into
descending order of geometric match, as a 'worst case'
test, was 305.4ms.

Figure 4 - The Chipped Brick

Further test runs have been made with data points at the
centre of the faces of the chipped brick illustrated in Fig-
ure 4, with the first data point on the chip face. The first
four data points relate to the visible faces of the brick, and
the remainder relate to the hidden surfaces. The latter
may be regarded as tactile data, but the distinction
between visual and tactile data is of no consequence
whatever at this stage in the recognition process.

The effect of the number of data points on run times with
Grimson's constraints applied to unsorted data is illus-
trated in Figure 5.

ran tune

milliseconds

r 15.0

- 10.0

7 data points

- 5.0

20 30

consistent matches

Figure 5 - The Relationship between Runtime
and Consistent Matches for the Chipped Brick

There is just one interpretation with four or more data
points, and the cumulative number of consistent matches
increases from 15 with four data points to 30 with seven
data points, with the corresponding run time increasing
from 6.6ms to 13.6ms.

The run time is in fact increased from 8.4ms to 10.8ms
with 5 data points sorted into ascending order of
geometric matches, but these times are both regarded as
highly satisfactory, especially by comparison with the
'worst case' run time of 67.0 ms.

The total number of geometric matches is increased from
75 to 146 when the constraints involving d.!^ and d.n2

are dropped. The time required to check these for con-
sistency is increased from 4.8ms to 14.6ms, and the pro-
gram returns 4 alternative interpretations. There is only
one additional geometric match when the constraint
involving d.n!xn2 is omitted, but this feeds through to a
cumulative total of 12 additional consistent matches to be
explored further, in the partial interpretations.

Finally, a comparison is made with the performance of a
sequential program, and of an implementation of the
method of Flynn and Harris. The run times with 3 data
points are 71.2ms and 650.3ms, respectively, including a
set up time of 648.1ms in the latter case, by comparison
with a total run time of 4.4ms by the present method.

There is scope for some reduction in the time required to
form the look up tables that are required by Flynn and
Harris. In any case, these tables may be installed in an
initialisation process, in which case the time required to
do so becomes relatively unimportant.

Of much greater significance is the way the memory
requirement of Hynn and Harris escalates as the number
of data points increases. With just 7 data points on the
chipped brick, every look up table would have to be pro-
cessed in 805 segments, on a 32 x 32 DAP processor. The
time required to establish a geometric match would
increase pro rata, from about 5ms to over 4 seconds, by

108



comparison with a total run time of 13.6ms by the present
method. Actual run times for the chipped brick are com-
pared with projected run times by the method of Flynn
and Harris for up to 5 data points, in Figure 6.

runtime

milliseconds

r-40

-30

-20

-10
3 data point

5 data points /

Flyim & Harris /

(excluding set up time) /

7
/ 5 data points

^ ^ ^ Holder &. Buxton

2 4 6 8 10

number of pairwise comparisons

Figure 6 - Run Times for the Chipped Brick by the
Present Method and the Method of Flynn and Harris.

Figure 7 - The Electric Plug (View 1)

We have established that the present method works well
with simple object models, but it remains to be seen
whether the same applies with more complex object
representations. A three-pin electric plug, similar to that
used by Murray1, has therefore been set up with a view to
further performance tests.

The plug has 27 faces, and is viewed from three different
positions, with data points in each case at the centre of
every visible face. The first view, which is illustrated in
Figure 7, has 14 visible faces, and involves 91 pairwise

comparisons; the second view, looking towards the back
of the plug has 12 visible faces, involving 66 comparis-
ons; the third view looks straight at the ends of the pins,
with just 4 visible faces, involving 6 comparisons.

An early run forcefully demonstrated the need to sort the
data into ascending order of geometric match, before
proceeding to check for consistent assignment to object
model faces. Once this is done, the program quickly
homes in on the correct interpretations with regard to
Views 1 and 2, with run times of 65ms and 37ms, respec-
tively, for complete pairwise matching of the two data
sets against model data. Not too surprisingly, the pro-
gram fails to distinguish between the ends of the two
short pins in View 3, and returns four interpretations in
10ms. The effects of working with subsets of the data on
the sequence of consistent matches with View 1, and the
resultant run times for Views 1 and 2, are illustrated in
Figures 8 and 9.

consistent

matches

- 10

- 5

J

40 pairwise comparisons

consistent

matches

20 40 60

comparison number

60 pairwise comparisons

80 100

20 40 60 80

comparison number

i- 5 80 pairwise comparisons

100

consistent

matches

20 40 60
comparison number

80 100

Figure 8 - The Effect of the Number of Pairwise
Comparisons on the Sequence of Consistent Matches
for View 1 of the Electric Plug

It can be seen that there is a trade off between the
increased time required to establish the situation with
regard to geometric match, when additional pairwise
comparisons are appended to the data, and the reduced
time needed to check the alternatives for consistency,
when some of the additional data pairs for which there
are few geometric matches appear near the front of the
sorted list. Thus a minimum runtime of about 46.5ms is
achieved with about 50 pairwise comparisons with View
1, and a minimum of about 27ms with about 40 comparis-
ons with View 2.

109



-150

run tune

milliseconds

-100

- 50

20

View 2

40 60 80 100

number of pairwise comparisons

Figure 9 - The Effect of the Number of Pairwise
Comparisons on Run Times for the Electric Plug

Furthermore, there is obviously scope for early termina-
tion when all of the data points have been uniquely
assigned to object model faces.

separate processor is required by Flynn and Harris for
each interpretation within a given segment, and this is
clearly not a feasible proposition either on the AMT DAP
or on the MIT Connection Machine. The present method
accomplishes the task, with a processing time of about 50
milleseconds.

Having shortlisted the feasible interpretations the next
step is to determine the most likely position and orienta-
tion and, if necessary, to choose between alternative
object models. Solutions may be obtained by applying the
method of least squares to the differences between a
given object model and the data. Faugeras, Ayache and
Faverjon6 describe how this may be accomplished, with
model surface elements and the data represented by the
quaternian pairs (n,d), where n is the normal unit vector
and d is the distance from the origin, in a global frame of
reference.

ACKNOWLEDGEMENTS

The authors would like to thank Dr Bernard Buxton and
Dr David Murray of the Hirst Research Centre, GEC
Research Ltd., for the advice and assistance received
from them in the course of the work described herein.
Thanks are also due from the first author to numerous
members of the support staff in the Department of Com-
puter Science, especially to William Roberts for his intro-
duction to the software at QMC, and to Kevin Smith in
the Centre for Parallel Computing, for his advice with
regard to the implementation of the method of Flynn and
Harris.

CONCLUDING REMARKS

Given m data points on a polyhedral object model with n
faces, we have a method that fully exploits nxn parallel-
ism in establishing the possibilities of a geometric match.
This is achieved without the escalation in the memory
requirement, as m increases, of the Flynn and Harris
method. The run times, with either method, inevitably
increase at least linearly with m(m-l)/2, the number of
pairwise comparisons between object model and data that
have to be made, and the number of segments into which
the look up tables have to be divided to fit onto the
machine is a multiplying factor. A consistent assignment
of data points to object model faces is guaranteed by
Flynn and Harris, but this has to be checked within the
present method. The run time for the additional work can
escalate if there is a large number alternatives to be
checked for consistency, but it seems that this is not a
problem provided that the data pairs arc sorted during the
run, into ascending order of geometric match.

The electric plug model is comfortably accomodated
without segmentation in the present method, on a 32x32
distributed array processor, the AMT DAP 500. With 27
faces, 14 of which are visible in the most interesting
view, and with a data point at the centre of each face,
there are more than 1020 possible interpretations. A

REFERENCES

1. Murray D.W. and Cook D.B. "Using the Orienta-
tion of Fragmentary 3D Edge Segments for
Polyhedral Object Recognition" International Journal
of Computer Vision Vol 2 (1988) pp 147 -163.

2. Grimson W.E.L. and Lozano-Perez T. "Model-
Based Recognition and Localization from Sparse
Range or Tactile Data" International Journal of
Robotics Research Vol 3 (1984).

3. Flynn A.M. and Harris J.G. "Recognition Algo-
rithms for the Connection Machine" Proc. Ninth
International Joint Conference on A.I., Morgan and
Kaufman (1985) pp 57 - 60.

4. Murray D.W. "Model-Based Recognition Using 3D
Shape Alone" Computer Vision Graphics and Image
Processing Vol 40 (1987) pp 250 - 266.

5. Grimson W.E.L. "The Combinatorics of Local Con-
straints in Model-Based Recognition and Localisation
from Sparse Data" MIT Artificial Intelligence Labora-
tory A.I. Memo 763 (1984).

6. Faugeras O.D., Ayache N. and Fiiverjon B. "A
Geometric Matcher for Recognising and Positioning
3-D Rigid Objects" Proc. AJ. Applications Confer-
ence IEEE (1984) pp 218 - 224.

no


