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This paper describes the continuation of our work on ez-
tracting simple surfaces from a 8D line-segment repre-
sentation of stereo tmage data. The surface parameters
Jorm a basis of a scene representation which 1s suitable
Jor navigation by a mobile robot and also for recognition
and manipulation of simple objects by a robot arm.
Follouwing our earlier work on planes we have now
developed methods and algorithms for recovering spher-
tcal, cylindrical and conical surfaces. The essence
of our approach 1is testing of small groups of 8D
line segments for compatibility with a particular sur-
face type. Mazimal sets of segments supporting
different surfaces are then identified. In this we
make a novel use of the Dual Space Representation.

1 Introduction

Choice of the best representation of image data obviously
depends on the purpose for which the representation is
being designed - e.g. an object recognition and manip-
ulation task may require a more complex and accurate
representation of the visible surfaces than a simple in-
door navigation task. The choice also depends on the
nature of the image data itself - e.g. dense depth maps
generated by a laser range finder and the sparse depth
data produced by a stereo edge-based system may give
rise to very different representations.

In principle we can use all of the usual representation
primitives based on points, lines, surfaces or volume el-
ements [1,2]. Many present systems, however, use pre-
dominantly only one of the geometrical primitives and
try to explore its full potential. In some applications
points [3] or volumes offer specific advantages, but in the
domains of indoor scenes or manufactured objects, simple
lines and surfaces can provide a basis for a more compact
representation.

These are the domains of interest in our collaborative
ESPRIT project P940 - “Depth and motion analysis”.
The aim of the project is to develop a vision system ca-
pable of guiding a mobile robot in indoor navigation tasks
and also a robot arm in object recognition and manipu-
lation tasks.

*This research was supported in part by the ESPRIT project
P940.
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Many indoor scenes can be adequately described in
terms of planes, and also a large category of manufacted
objects that are being considered for our recognition
and manipulation tasks can be adequately described in
terms of four surface types : planes, cylinders, cones and
spheres. We have therefore proposed (and are currently
implementing at the Long Range Research Laboratory,
HRC, Wembley) a compact scene representation scheme
(COMPACT) based on those four surface primitives.

The input to the higher level representation is a set of
3D line segments produced by the initial stages of our
three-camera stereo vision system [4].

It has been shown that, given a set of 3D line seg-
ments, one can construct closed continuous contours (or
parts thereof) that directly imply surfaces (usually pla-
nar faces of simple polyhedral objects [5], although this
approach has also been used to locate cylinders in im-
ages [6]). There are two problems associated with this
approach : it often requires complete surface contours
and also it makes no use of the segments “inside” the
surface boundaries that often make up most of the data
(e.g. segments corresponding to windows, pictures and
other features of walls in interior scenes).

Our approach is based on direct extraction of sur-
face candidates from groups of segments and subsequent
merging of the compatible candidates into finite surfaces.

2 The method

2.1 General description

We shall explain the basic method on the example of a
planar surface (which has already been described in detail
in [7,8]). Here we consider pairs of segments : each pair
is tested for coplanarity and each coplanar pair is used
either to update an existing surface candidate or to form
a new candidate. When all the pairs are exhausted, some
surface candidates are removed if the number of segments
supporting them is small, and some merged (if compati-
ble) to yield a small number of significant surfaces. The
surface parameters (in the planar case the surface normal
and the perpendicular distance to the origin) are being
continuously updated. We shall refer to this as the “sur-
face growing” method.

The Dual Space Representation (DSR - see Appendix
A and [9]) offers an alternative way of finding planes.
Here a point, a line and a plane in space are represented

AVC 1988 doi:10.5244/C.2.15



in Dual Space by a plane, a line and a point respectively.
Thus a set of coplanar lines in space is mapped onto a
set of lines intersecting in a single point in Dual Space.
When Dual Space is divided into small cells (similar to
the Hough accumulator) such intersections can be found
as maxima in the number of lines intersecting each cell.

The main advantage of this (DSR) method (apart from
its elegance) is its speed - instead of being proportional
to the number of segment pairs, the computing time here
is linear in the number of segments (with some additional
- fixed - time for the maxima search). On the other hand
there is a limit to the number of maxima we can identify
in a noisy Dual Space population. Also the treatment of
errors is far less straightforward due to the granularity of
Dual Space and the nature of the mapping transforma-
tions.

2.2 Treatment of errors

The description of uncertainties associated with all the
quantities in our calculations is based on the assumption
[10] that a covariance matrix always provides a sufficient
parametrization of the relevant probability distribution
and that the covariant matrices can be propagated using
the standard formula [11] :
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where ¥ is a set of m functions which all depend on
the set of n random variables Z (yx = yi(Z)). The error
on any quantity is then given by the square root of the
relevant variance.

Starting with the experimentally determined covari-
ance matrices of the segment end points we first compute
the errors for the segment parameters (unit vector and
length), then for the intermediate quantities (e.g. vector
products) and finally for the resultant surface parame-
ters.

In the surface growing approach the surface param-
eters are continuously updated by the addition of new
estimates and the updated values are determined as the
weighted means of all the previous measurements. Our
method of computing the (in general correlated) param-
eters and the relevant variances is sketched out in Ap-
pendix B.

In addition, to take into account the departure from
ideal planes of many real quasi-planar surfaces, that we
perceive (and hence wish to identify) as planar, we have
introduced the concept of “perceptual resolution”. As
an example, consider a set of segments representing a
window. For the purposes of recognition we may wish to
regard all the segments as belonging to the same planar
surface although they may be contained in a rectangular
volume of space some 10-20 cms thick. When a segment is
tested for consistency with a particular plane, we consider
not only the errors on the segment and plane parameters,
but also the perceptual resolution.

Hence it is not always easy to test the errors except in
some global sense. As an example consider an office scene
represented by the 3D segments in Figure 1. There are
two main vertical planes there corresponding to the left
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Figure 1: INRIA office scene

a) one of the triplet of images

b) front view of the 3D segments
c) top view of the 3D segments

wall (with windows) and the cabinets on the right (with
posters). While the distribution of segments associated
with each plane is quite “noisy”, we would expect the
plane normals fi; and fi; to be well determined and in
our case perpendicular (see Figure 1c). In our analysis
we get :

cosf = fi; - fi; = 0.020 £ 0.027 -

i.e. the walls are perpendicular within the (small) error.

2.3 Spheres

A spherical surface can be identified by examining
triplets of line segments [7,12]. Strictly speaking our
method is based on triplets of surface tangents. Here
we make an assumption that a line segment, which is an
approximation to a section of a surface curve, is also a
good approximation to a surface tangent #; at a surface
point close to the segment midpoint P;. Experiments
with real data (see our results shown below) suggest that
this assumption is reasonable. A triplet of surface tan-
gents defines a triplet of planes (fi; = p;,Fii; = pp and
Fii3 = p3) normal to the tangents, that intersect in a sin-
gle point R (Figure 2) whose position can be computed
[13] :

p1(t2 X 63) + pa(ts X ;) + pa(d; X #3)

R=
t-.l'l(ﬁg x 53)

unless iy (iia X #i3) = 0. If the distance from R to the
three surface points P; is the same (= D), the segments
are consistent with a spherical surface which is described
by its centre R and its radius D.



Figure 2: Test of the spherical surface hypothesis

2.4 Cylinders and Cones

The cylinders and cones are treated in the same way. The
basic idea is to find the axis of the cylinder or cone as
an intersection of several planes that are normal to the
surface and that contain the axis. In order to find such
planes we make an assumption that our line segments are
parts (or approximations thereof) of the surface lines of
curvature that are planar and whose associated curvature
is constant. Such lines have been found to be important
descriptors of surfaces (14]. On cylindrical and conical
surfaces these are either straight lines (parallels) or circles
(meridians).

For each pair of parallels we can construct their plane
of mirror symmetry, which passes through the axis of the
surface. Hence the axis can be found as the intersection
of several such planes (Figure 3a).

For each segment that approximates a part of a merid-
ian we can find a plane normal to the segment which
also passes through the axis. And similarly the axis can
be found as the intersection of several such planes (Fig-
ure 3b).

The task of searching for such plane intersections is
made simpler when we use the Dual Space Representa-
tion (DSR). Here a set of planes intersecting in a single
line in 3-space is transformed into a set of points lying
on a line in Dual Space. This (dual) line can be found by
using the Hough transform or other standard methods.

The requirement that a significant fraction of segments
is of the “parallel” or “meridian” type may appear some-
what restricting. There are many objects with more or
less random distribution of surface markings or, indeed,
with no markings al all. For such cases we proposed
[12] a way of generating a set of parallels from the ex-
tremal (self-occluding) boundaries of the object (we are
still talking about cylinders and cones!).

In the mode of operation of the optical system in ques-
tion, when the cameras move around the object (e.g. a
cylinder), accumulating and combining information in or-
der to build a more complete description of the visible
surface, different projections of the “real” lines in space
will coincide when projected back into space. The ex-
tremal boundaries, however, will move along the surface
as the cameras move and so they can be identified as
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Figure 3: Determining the axis of a cylinder or a cone
a) from a set of parallels
b) from a set of meridians

such. Their projections in 3-space will not coincide; they
will form a set of different rulings that can be used in our
method. This way of generating useful sets of segments
is currently being tested.

3 Implementation and results

The methods described above have been implemented as
a suite of programs written in Franz Lisp and running on
our VAX 11-750 with the Unix operating system. It is
anticipated that some parts will be implemented in ‘C’.

The algorithms have been tested with simulated data,
both ideal and with superimposed errors, and also with
real sets of 3D line segments from the pool of image
data provided for the collaboration by our ESPRIT col-
leagues. The planar algorithms were tested using office
scenes (Figure 1) from INRIA (Rocquencourt) and to
test the non-planar methods we used triplets of images
of a sphere and a cylinder obtained at ELSAG (Genoa)
and prosessed at INRIA where the 3D segments were ex-
tracted (Figures 6 and 7).

Time taken to process a typical office scene (~150 seg-
ments, Figure 1) is of the order of several minutes. The
DSR mapping of segments into the Dual Space is faster,
while the spherical algorithm based on segment triplets
can take several tens of minutes. At the moment the
algorithms are not optimized for speed and we expect
considerable improvement in the running times in the
future.

The planar case (Figure 1) has already been discussed
elsewhere [7,8] and so here we shall concentrate on the
quadric surfaces.
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Figure 4: Simulated (ideal) data
a) two coaxial cylinders - 3D segments
b) a projection of Dual Space

Figure 4a shows an example of the synthetic (ideal)
data. Here we have two coaxial cylinders and all the seg-
ments are “parallels” on the surfaces. Because the cylin-
ders are coaxial, both separate sets of segments map onto
the same straight line in Dual Space (Figure 4b). There
is, however, also a contribution from the “mixed® pairs of
segments (each segment from a different cylinder) which
constitutes a background. The straight line parameters
were determined by the Principal Axis method used in
an iterative mode to reject outliers at every step and to
gradually “home in” onto the line. This line was then
mapped back to the ordinary space to give the correct
position of the surface axis (shown in Figure 4a). Once
the axis is known, the two radii can easily be computed.

Figure 5 shows the effect of realistic errors being im-
posed on the ideal segments (5a). There is a scatter of
points about the “best line fit” in Dual Space (Figure 5b)
that translates into a finite spread of the angle between
the segments and the computed axis about the ideal (i.e.
zero errors) value.

Finally in Figures 6 and 7 we show the results obtained
with real data. For the test of the spherical algorithm we
used an image of a ball painted with a simple pattern,
resting on a table. For the corresponding set of 3D seg-
ments shown in Figure 6a the program found only one
significant spherical surface candidate and the segments
assigned to it are shown in Figure 6b. The radius of the
sphere has been computed to be 46 mm compared with
the measured value of 45 mm.

Similarly to test the cylindrical algorithm we used an
image of a cylinder decorated with a simple pattern.
Each of the corresponding segments in Figure 7a was as-
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Figure 5: Simulated (noisy) data - a cone
a) 3D segments and the reconstructed axis
b) x-y projection of the Dual Space

sumed to be a part of a meridian although many segments
have very different orientation. Nevertheless, a straight
line fit to the corresponding Dual Space distribution (Fig-
ure 7b) gave a reasonable estimate of the cylinder axis as
shown superimposed on the data in Figure 7a.

4 Future work

Having demonstrated our ability to determine the surface
parameters of each of the four surface types from the
line segment representation of image data, we now have
to integrate our algorithms into a single system capable
of dealing with any mixture of the basic surface types
present in complex scenes.

Considering the use of our scheme for navigation and
object recognition we have to develop ways of matching
the representation of a scene to the representation of the
same scene viewed from a different viewpoint or to an
appropriate representation of familiar objects likely to
be found in the scene. We are also investigating meth-
ods for interpretation of image data without referring to
geometrical models. This will be done by analyzing the
spatial relations between the surfaces and using domain
specific knowledge to provide additional constraints.
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Figure 6: A real sphere
a) all 3D segments
b) segments found to belong to the sphere
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Figure 7: A real cylinder
a) 3D segments and the computed axis
b) a projection of the Dual Space
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A Dual Space Representation

A.1 Dual point to a plane

A plane with an unit surface normal N = (Nz, Ny, N.)
passing through a point V is mapped to a dual point
(prair) :

_N. N, NV
(P’q’r)_(N_an_zn“Tz)

ifN,#0

A.2 Dual plane to a point

A point V = (z,y, z) is mapped to a dual plane with an
unit surface normal N = (%, £, %) and passing through

a dual point V = N (- %) where B = VI + 22 +42).

A.3 Dual line to a line

A line with a unit vector L = (L, Ly, L;) and passing
through a point V ( ¥ = v+ )\f] is mapped to a dual
line joining the following two points S; and Ss :

- Ni, N1 NV
S = (pl,ql‘rl) = (Nl‘r N’:'_le}
N2, N2, NV

§2 — (pziqz! rg) — (Ngla sz 1 _st)

if N7, N7 #0
which themselves are dual to the two planes passing
through the point V and having the following unit surface

normals :

As points, lines and planes are interrelated, so are their

duals.

B Errors for correlated vector
quantities

Let us consider estimation of a vector quantity z given
n measurements (Zj, %3, ...,Zn) and also the (different)
covariance matrices V;. We shall use the Maximum
Likelihood principle to derive the appropriate estimator.
Starting from the likelihood function [11] :

n

L(z, Vi) = [[ —=

e~ F(E=A)TV T (-
=1 2m) ¥ Vil

we require that :



8IlnL
n =0
Op

In the case of 3-dimensional vector quantity (k =
1,2,3) the above condition leads to the following 3 in-
homogeneous equations (for better readability we shall
drop the summation index ¢t and denote the elements of
the inverse covariance matrices V=1 by M) :

) Meztpy ) Mey+p,y M, =
=) Moo+ Y yMoy+ ) 2M.,

) Myztpy ) Myy+pe ) My,
= My + Y yMy, + ) zM,,

Be S M+ 1ty Y Muy e Y My =
=) M+ ) yMay+ ) 2M,,

The solution can be given as follows :

= '_D: - & - —D,
Hz = D Hy = D Ha= D
where :
L Mee Y Mgy ) Mg,
D= EMFI EMW ZMW
EMsz EM:y EM:':

and the determinants D., D, and D, are formed by
replacing the “x,y or ” column in D by the right hand
side of the equations above :

ZMxv E:sz 2(3M11+ysz+zM:x)
D‘ = EMIW E le' Z(IMV: + yMyy = ZMy:)
E:sz ZMIS E(stz+ysz+2sz)

and similarly for Dy and D,.

Using a similar approach we can also derive the estima-
tor for the covariance matrix associated with the vector
A. The result is simple - to obtain the inverse of the co-
variance matrix we sum up the inverse covariant matrices
of the individual measurements :

VoHu) = 3V (=)
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