A Frame-based System for Modelling and Executing Visual Tasks

Peter W Woods, David Pycock, and Christopher J Taylor

Wolfson Image Analysis Unit
Department of Medical Biophysics
University of Manchester, Oxford Road
MANCHESTER M13 9PT

This paper describes a framework for model represen-
tation and control intended as the basis of a computer
vision system capable of undertaking arbitrary but well
defined image interpretation tasks. An inter-related
structure of models represents both the visual task and
image content. The user defines this structure but not
the internal details of all models, so non vision experts
can program the system. The approach is illustrated by
considering two examples, one in interpreting cell im-
ages, the other in industrial inspection.

INTRODUCTION

This work forms part of a project called 'Techniques
for User-Programmable Image Processing’ ( TUPIP ),
which is directed towards producing a computer vision
system which can accept a description of a visual task
from a user who is not an image processing expert and
generate a ‘solution’, ie be capable of performing the
task. The chief requirements of such a system are that
there is sufficient flexibility for a user to adequately de-
scribe arbitrary image contents and analysis goals, and
that there is a reasonably efficient but task independent
control strategy that can execute the task robustly. This
paper describes a model-based framework for knowl-
edge representation and control that can fulfill these
demands. We exploit the fact that the specific nature of
a well defined visual task enables a detailed model to
be constructed. The types of visual task considered in-
volve static images of repetitively occurring scenes.

Whereas model-based approaches to computer vision
are widespread ', most do not use prior knowledge to
direct the image processing throughout their execution,
but rely on a data-base of features extracted at the
start. This is acceptable if the features can be chosen
in advance to be appropriate to the type of image and
the visual task. In a general purpose system, it becomes
unfeasible to measure all the potentially useful image
properties beforehand, so there must be a mechanism
for gathering evidence on demand. We have chosen a
framework for representation based on frames in the
sense of Minsky 2 which allows methods for acquiring
data to be associated with the data.

This work is supported by an SERC grant and is carried out as
part of Alvey project MMI-093 : 'Techniques for User-Pro-
grammable Image Processing’.
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Frame-based representations have become increasingly
popular for Al in general and computer vision in par-
ticular 1 3 4 . The VISIONS system described by Han-
son and Riseman ® ® is an example of a frame-based
system which interprets outdoor scenes by region labell-
ing. They recognise the need for goal directed control
of low level processes and use properties of region types
which are acquired from examples to select dynami-
cally the operation which will give the best resegmenta-
tion of a doubtful region. This mechanism is not how-
ever general enough to be useful in other types of visual
task.

Tsotsos has described a highly structured framework
for modelling image sequences 7 which has been ap-
plied to the interpretation of coronary radiographs 8.
The model structure and control strategy are generic,
but the application relies on the programmer providing
detailed internal definitions of frames including appli-
cation specific instantiation methods.

We describe a framework for knowledge representa-
tion, similar in some ways to these, which allows fairly
straightforward representation of prior knowledge
about the task. The user defines an inter-related set of
sub-models which are frames, arranged in a multi-
levelled structure which defines the task and also mod-
els the image contents. In this paper, the entire struc-
ture will be referred to as the 'world model’, and sub-
models will be referred to as model elements. The
structural relationships are defined by part-of links
augmented by descriptions of inter-relationships such
as relative position, whereas individual model elements
are defined as specialisations of generic system~-defined
model elements called prototypes. In a particular task,
the structure of the world model is used in conjunction
with a task independent control strategy to guide its in-
stantiation and this process is equivalent to achieving
the goals of the task.

The user of our system is expected to have sufficient
insight into the visual task to specify the structure of a
world model. It cannot however be assumed that the
user is able to specify the detailed properties of model
elements nor describe how these are to become instan-
tiated. The problem thus arises as to how methods of
instantiation can become associated with user-defined
model elements. We describe below how this problem
can be overcome by specialisation. Many model ele-
ments will contain parameters associated with the de-
scription of such things as shape, grey-level properties,
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and spatial relationships which are implicit within pro-
totypes and initially undefined. We also believe that the
only sensible way for the user to describe properties or
variants of some model elements is by the use of exam-
ples. A training session is therefore considered essential
in creating a useful world model.

A mechanism to control instantiation of the world
model is crucial because even where the imaged scenes
are highly constrained the number of possible interpre-
tations of an image will be far too large to be exhaus-
tively searched. The two most important issues are how
to guide the pattern of instantiation so as to reach an
optimal interpretation in an efficient way, and how to
reason with uncertain information. The latter issue
arises since it must be assumed that image features are
subject to distortion and loss, and there may be a sig-
nificant degree of variability in the appearance or form
of the imaged scenes from one instance to the next.

We do not yet have a fully integrated implementation
of our system although individual parts are currently
being tested. However, we describe in detail how the
framework we have outlined can be applied to two ex-
ample problems, one involving medical image interpre-
tation, namely chromosome analysis, and the other
from the realm of industrial inspection.

MODEL REPRESENTATION
The World Model

We propose a world model which has two roles. The
first is to represent items expected to be encountered in
images, to allow their detection and recognition. The
second role is to model the task. We assert that the
world model should be structured so that these roles
are combined and, in effect, the instantiation of the
complete model is equivalent to achieving the goals of
the task. In this sense, the proposed model differs from
other frame-based approaches such as VISIONS which
focus on the structural description of image content. In
our system, goals are represented by model elements
which the user indicates explicitly to be the goal
frames. These might represent a fault report, a list of
derived measurements, or a synthesised image as in the
examples below. The elements of the goal frames are
related either directly or via one or more levels of ab-
straction to model elements which do represent image
content.

A multi-levelled structure for the world model is of im-
portance for several reasons. It allows the potential
computational complexity of the visual task to be lim-
ited by constraining the number of interpretations
which need to be considered at any stage. It also makes
the specification of a complex visual task more man-
ageable and allows results to be directly associated with
what the user has defined. The principal type of struc-
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tural link used to build a world model from model ele-
ments is the 'part-of’ link which allows model elements
(frames) to contain other frames. The part-of link has
a dual role in representing physical containment in the
imaged scenes and also representing ownership of ab-
stract properties. There must also be the ability to rep-
resent constraints on relationships of various types be-
tween model elements. These relationships are ex-
pressed by other frames with links to two model ele-
ments and are considered in detail below. The only
other type of link required is a reference link whereby
frames can contain references to slots of other frames,
allowing data to be shared. This is necessary because
methods of frames cannot refer directly to other frames
if they are to be independent of the world model struc-
ture. ( An exception to this is when methods involve
model elements which are always present, such as in-
stantiation methods which use both grey-level and
shape sub-components.) Reference links allow specific
values which correspond to properties of one model
element to be used by methods belonging to another
model element.

The lowest level of model elements in the world model
can represent fairly complex image structures - the
model does not extend explicitly below what the user
would normally consider as objects, eg as far as edge
segments or other low-level image primitives. Shape
descriptors capable of representing objects are pro-
vided by specialisation. These can contain more than
one representation of the object and are capable of
transforming between representations 9. Neither the
shape descriptor nor therefore the corresponding
model element can represent holes or subregions within
a shape and so these have to be modelled by part-of
links with the holes or subregions represented by their
own model elements.

Specialisation

The system provides a hierarchy of generic prototypes.
The user is able to select one of these as a basis for a
more specific definition, ie the user can generate sub-
classes for specific cases which can inherit appropriate
representational structures and associated methods.
This means that the user does not need to specify the
internal forms of shape models and other generic prop-
erties. Obviously the range of tasks that the system is
capable of performing depends on how broad a set of
prototypes are available, and they must be documented
in a way which will allow the user to select them intelli-
gently. However the library of prototypes can be easily
extended without the structure of the system needing to
be changed.

Any model element representing an object in an image
will be a specialisation of some 'object-frame’ proto-
type. All such model elements will inherit a shape de-
scriptor together with positional and size descriptors, an



area grey-level descriptor and a boundary grey-level
descriptor. (The latter is a model of the grey-level
profile across the object boundary). All model ele-
ments will also inherit a set of properties concerned
with control. These are a confidence factor, represent-
ing the quality of instantiation or closeness to expecta-
tions, and two subsidiary quantities, 'importance’ and
‘utility’. Importance is a measure of how necessary the
model element is for the achievement of the goals. Util-
ity is a measure of how useful a model element is in
helping to instantiate the model elements to which it is
related. This is a function of the degree to which it con-
strains the properties of related elements, the expected
quality of its instantiation, and also the computational
cost of its instantiation though this is not taken into
account at present.

Specialisation occurs when the world model is first cre-
ated, before the system executes. The system does not
generally explore the specialisation hierarchy except
where there are different subclasses of some common
prototype explicit in the world model. Specialisation
consists mostly of constraining the properties of a su-
perclass, but new properties can be added via the
part—of relationship. For example, a ‘symmetric-rib-
bon’ prototype is a specialisation of the object—frame
prototype whose shape model has certain prior con-
straints.

Relationships

The types of relationship that can exist between model
elements which represent image content are spatial, in-
cluding both topological and geometric relationships,
and conditional, including logical and cardinal proper-
ties. Constraints on spatial relationships have obvious
uses both in limiting the area of an image that needs to
be processed to find evidence for a particular object,
and in reducing the number of interpretations of gener-
ated evidence that need to be considered. Thus they
have a crucial role in controlling instantiation. Rela-
tionships are defined only between a parent model ele-
ment and its sub—components or between sibling model
elements.

Geometrical relationships are represented independ-
ently of the nature of the objects involved so that com-
mon methods can be used to combine different con-
straints on object positions. In the TUPIP project it is
assumed that 3-D scenes can be interpreted in terms
of 2-D models and so the geometrical relationships are
confined to a plane, and are expressed in terms of rela-
tive position in polar coordinates, and relative orienta-
tion. Topological relationships are limited to touching,
overlapping, containment, and their inverses.

The user must indicate that spatial relationships do ex-
ist between specific model elements, but need not spec-
ify them completely since this can be done by the sys-

tem itself during training. The system does not attempt
to discover for itself all the possible constraints that
might operate between model elements and assumes
there are none if the user does not specify otherwise.

Whereas spatial relationships are defined with respect
to the positional attributes of model elements, condi-
tional relationships are qualifications of part-of rela-
tionships. Conditional relationships are required to cap-
ture information on the cardinality of model elements
and whether the element must be or might be present
in a scene. They are also used to express conditions on
the properties of model elements imposed by others.
Examples are: "There should be two instantiations of
chromosome #1”, and "“There is either one X-
chromosome and one Y-chromosome in the image, or
two X-chromosomes”. Relationships of this type are
both provided by the user and internally represented
in a declarative form.

TRAINING

The world model can be considered to be ‘compiled’
from the user’s definition into a static structure. Before
this can be used to guide execution of the task, implicit
parameters within model elements must be set up and
this is achieved by a training phase. Training operates
in a similar manner to that described by Woods et al. 1°
using a representative set of example images. The train-
ing phase consists of a series of step by step attempts at
instantiation with results being displayed to the user in
an appropriate way. The first training pass involves a
considerable amount of explicit questioning of the user
by the system, for instance to prompt the user to indi-
cate examples of particular model elements in an im-
age. This will allow an initial set of parameters to be
derived which can be used for future attempts at in-
stantiation and refined subsequently. The user is
prompted to confirm or modify results at each step.
For example, after instantiating the shape of an object,
the boundary might be displayed overlayed on the
original image. The user can either accept this or move
part of the boundary with a mouse to indicate an ac-
ceptable result. Similarly precursory possible sites of
objects provided by cue generators can be indicated as
true or false. In this manner it is intended that "hidden’
parameters of grey-level properties, geometrical con-
straints, and shape descriptors can become fully de-
fined for all of the model elements for which they are
relevant. The parameters represent not only average
values but also allowed ranges and degrees of variabil-

ity.

During training, statistics on confidence factors are
gathered both for successful and incorrect instantia-
tions and from these a value can be obtained which is
used to normalise the factors obtained during execu-
tion. Training also serves to define values for impor-
tance and utility. These can each take on one of a



small set of possible values and are initialised to default
values when the world model is created. During train-
ing they relax to appropriate values which remain con-
stant thereafter. For example, where inherited model
sub-components are irrelevant to a particular task their
importance value will become set to the minimum value
so that no attempt will normally be made to instantiate
them. Conversely elements which are essential to fulfill-
ing the goals of a task will have the highest importance.
Utility values will be based on the reliability of instan-
tiation as measured during training.

A training session can fulfill a complementary role to
that of collecting parametric data, in delineating ac-
tions to be associated with particular points of instantia-
tion or conflict between interpretations. For example
when a candidate object is too large and has an abnor-
mal shape, an attempt should be made to interpret it as
two or more candidates. Even assuming a generic
‘splitting’ method exists to seek evidence for a disjunc-
tion between two points or regions, this must be se-
lected from other such methods. This will rely on the
user manually indicating and splitting such aggregates
during training.

The system becomes more reliable as the training ses-
sion progresses and can be terminated by the user
when appropriate. However the system will normally be
able to revert automatically to training mode if it de-
tects a situation where it cannot produce an acceptable
interpretation.

CONTROL

We have already introduced the idea that the goal of a
visual task is represented as one or more identified
frames in the world model. The instantiation of these
frames provides the fulfillment of the goal and will in
general depend on the instantiation of the rest of the
model. The matching of derived data to model ele-
ments is not a simple graph matching process but must
take into account the variability and uncertainty in both
model and image data.

Initially, control involves backward chaining from the
goal frame(s) to successive part-of elements in the
model structure until an element is encountered which
can be directly instantiated. Instantiation is then at-
tempted, which typically involves cues being generated
from the image within an area delineated by the known
spatial constraints, and each cue in turn being assessed
as genuinely arising from the expected object. This can
lead to one or more candidate instantiations of the
relevant model element. Cue generation methods '+ 12
are built into prototypes and are controlled by the
shape and grey-level parameters of the model element.
The cues are designed to correspond directly to one
form of representation used by the shape descriptor °.
Verification consists of using the cue to gather more
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detailed and specific data which can be matched
against the model to produce an interpretation and an
associated confidence factor. The confidence factor
depends on how well the parts of the model element
were themselves instantiated and also on the impor-
tance factor associated with each part. Both utility and
importance aid efficiency by helping to select the best
route for instantiation, but are not essential for the sys-
tem to discover an interpretation eventually.

This pattern of cue generation and verification is one
level of a ‘hypothesise and test’ control strategy. Once
some model element is instantiated, it can become pos-
sible or easier to instantiate related model elements and
the control strategy changes to a data-driven mode
which is, however, constrained by the relationships in
the world model. There is not in general a modelling of
the whole of the image and only features that are in-
tended to match specific model elements are sought.

Once the sub-components of a higher level model ele-
ment have been instantiated, the model element itself
can become instantiated. We will say that a model is
instantiated when an adequate match is obtained be-
tween an adequate number of the components of the
model and candidate data. The hypothesise and test
strategy is modified when verification fails or when a
higher level inconsistency arises, ie when evidence
may accumulate for believing that certain locally ac-
ceptable interpretations are inconsistent. In such cir-
cumstances a search for confirmatory evidence is un-
dertaken. The exact operations to be performed when
such an inconsistency is discovered must be limited in
range and there must be criteria for choice which will
come in part from the training session as outlined
above. The resulting new or confirmed interpretation is
then used as before in a data-driven phase.

IMPLEMENTATION

We have considered the use of both a blackboard ar-
chitecture and an object oriented environment for im-
plementing our world model framework. Blackboard
architectures '® offer many appropriate properties as a
basis for implementing the world model. They provide
a mechanism for separating procedural specification
from declarative knowledge, the flow of control is de-
termined at run time by a scheduler according to the
state of the blackboard ( ie what data and hypotheses
have been generated ), and multiple and/or partial hy-
potheses can be asserted and retracted. Although
blackboard systems can employ frames 4, they are
most appropriate where there is less prior knowledge
than we expect to have in the context of TUPIP. Fur-
thermore, although the architecture itself is versatile
and domain independent, rudimentary generic sched-
uling rules normally have to be augmented by applica-
tion-specific mechanisms.



Object-oriented programming would provide direct
support for some aspects of a frame-based system, but
does not cater for functions which are not methods of
specific frames.

We are implementing our frame system using Inference
ARTt which allows flexibility in the design both of the
representational structures and of separate rule bases
used to implement functions such as spatial reasoning
and the control mechanisms.

Many of the instantiation methods associated with
model elements involve procedural algorithms which it
would be inappropriate to implement at the level of
frame representation. Equally, these algorithms must
directly manipulate image and other data which do not
need to be directly represented or made explicit at the
level of the world model. In our system such methods
are implemented in Pascal and may use special purpose
hardware. They are therefore grouped together with
the relevant data structures into modules, which are
objects in the sense of object-oriented programming,
so that they can be invoked during instantiation of the
world model via a message passing mechanism. The
messages are procedurally attached to slots of the rele-
vant frames, where such slots usually represent sym-
bolic references to the data structures within the mod-
ules. This allows the correct degree of control over
low-level processing despite the separation between the
symbolic and numeric levels of computation.

EXAMPLES

We describe how the above framework can be applied
to two visual tasks of a contrasting nature, both of
which have been the subject of previous study leading
to specific solutions against which the performance of
the proposed system can eventually be compared. The
following examples demonstrate our intended use of
the system and serve to illustrate the above description.

Chromosome Classification

Figure 1 shows the genetic material from a human cell
arranged, as it is during cell division, into a set of chro-
mosomes which appear as darkly stained bodies. In or-
der to detect genetic abnormalities it is necessary to
identify individual chromosomes on the basis of size,
shape, and pattern of stain uptake (banding pattern).
Some of these properties have to be measured relative
to a particular image. The desired result is a display
called a karyogram where identified chromosomes ap-
pear in a fixed format as shown in figure 2. A semi-
automated interactive system which addresses this task
is described by Graham 15.

Figure 3 shows the model structure for this example.
Figure 4 shows the relevant portion of an inheritance

1 ART is a trademark of the Inference Corporation of Los
Angeles
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Figure 2. A typical karyogram display

hierarchy indicating how elements of the model in fig-
ure 3 have been specialised from generic prototypes.
The karyogram can be considered as a specialisation of
a cell image in which the positions of chromosomes are
exactly constrained, and can thus be generated from an
actual cell image whose chromosomes have been iden-
tified.

The major problems posed by this example are in re-
solving ambiguities due to touching or overlapping
chromosomes and in producing an optimal classifica-
tion given missing data due to obscured parts of band-
ing patterns and boundaries. No spatial constraints ex-
ist and there is a great deal of variability in the appear-
ance of chromosomes. This variability means that indi-
vidual blobs in the cell image might match best to the
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Figure 4. Portion of the inheritance hierarchy showing user
defined model elements ( dotted boxes), and system proto-
types ( solid boxes ), for the chromosome classification exam-

g{gbrrect chromosome model. The system might there-
fore be expected on occasion to instantiate too many
instances of some chromosomes and too few of others,
but the model makes such errors explicit. Our control
structure must be able to use this information to focus
further processing toward re—interpretation of the ’ex-
cess’ candidates as instances of the missing ones.

Inspection of Complex Assemblies

In this example the goal is to detect faults in a complex
mechanical assembly, specifically a car rear drum-
brake as shown in figure 5, on the basis of a set of

Figure 5. One view of a brake assembly.

user—defined tests. These involve determining that
components are present, correctly fitted and undam-
aged. The world model is complex but constrained, al-
lowing well defined geometric relationships between
sub-parts to be exploited. A model-based but proce-
dural approach to this problem is described by Woods
et al 9. For clarity we discuss here a simplified case
where only one measurement is used.

Figure 6 shows the the world model and figure 7 shows
the relevant portion of the specialisation hierarchy. The
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Figure 6. A simplified world model for the industrial assem-
bly example. See key in figure 3.

user elects to use a limit classifier to test that the lining
thickness is within an allowed tolerance. The classifier
requires a real number derived in this case from the
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Figure 7. Portion of the inheritance hierarchy showing user
defined model elements ( dotted boxes), and system proto-
types ( solid boxes ), for the assembly example.

instantiated lining shape description. User interface
methods associated with the dimensional measurement
frame with a fixed vocabulary of terms such as thick-
ness, would allow the user is to establish this link with-
out understanding the internal shape descriptor.

The lining must become instantiated for the goal to be
achieved but this might involve first finding the shoe to
which it is attached. In general, some components will
be easier to locate unambiguously than others and so
the most robust instantiation strategy might involve ob-
jects such as the shoe which are not essential for the
goal. This provides a good test of the aspects of control
that involve the use of importance and utility factors.
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