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This paper describes a simple model-based approach
to boundary detection for blob shaped objects. A
geometric model is used to focus attention on relevant
portions of the image during boundary generation. The
boundary generated is that which is a globally optimal
match to the shape and edge description parameters of
the model. The method is illustrated using images of
stained transverse sections of skeletal muscle and the
adaptability of the model is demonstrated using images
of cells of the corneal endothelium which have poor
grey-level contrast.

The task of image interpretation involves the
combination of both low-level and high-level
processes. Low-level processes, such as edge
detection, are primarily numerical and deal directly
with data in image arrays. High-level processes are
more symbolic in nature and deal with abstracted
image features. Models of expected image structure
have been proposed as a means of providing a
framework within which high-level and low-level
processing can be integrated. However, a truly general
approach has yet to be reported and many issues
remain to be investigated.

One of the problems which arise from the use of
models is the computational complexity of the
matching process11. Even relatively simple
model-matching tasks may be of sufficient complexity
to strain the performance of any presently conceivable
machine10. One way of coping with this problem is to
use cues to focus attention on likely interpretations,
thus avoiding computational effort being wasted on the
more unlikely ones.

Cues can be thought of as evidence of structure which
may be used in conjunction with models to generate
hypotheses about the presence of other structures in
the image. In the earliest stages of image interpretation
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it is probably inevitable that cue generation depends on
the use of unguided low-level processes, but it is
important to recognise that evidence gathered in this
way is not likely to represent the best which could be
sought in support of a particular emerging hypothesis.
In practice, it may be necessary to use a strategy of
successive refinement, in which unguided low-level
processes can be used to provide sufficient evidence for
an initial interpretation which may then be used as an
organising hypothesis, to guide the collection and
interpretation of further low-level evidence. This new
evidence may in turn lead to yet further refinements of
interpretation.

In this paper we describe some work in which we have
attempted to explore the two key ideas of cue
generation and successive refinement of interpretation
by applying them to a practical problem. The example
which we have chosen is the analysis of transverse
sections of skeletal muscle fibres stained to show
myosin ATPase activity as shown in Fig. 1. A common
requirement in the analysis of such images is to
measure the size, shape and density of stain uptake for
a large number of fibres. To do this it is necessary to
delineate fibre boundaries, a tedious and time
consuming task to undertake manually.

Previous work3-5 has predominantly involved
low-level processing and paid little attention to the
formal representation of knowledge. Me Queen6

describes a model-based bubble-growing algorithm for
finding the boundaries of fibres in preparations similar
to those which we have used. He acknowledges,
however, that this is a computationally expensive
process. No attempt was made to reduce the
computational load by using a focus of attention
strategy; bubbles are initiated at arbitrary points in the
image.

OVERVIEW OF THE METHOD

Skeletal muscle is composed of compact bundles of
fibres which, when sectioned, stained and mounted,
appear in cross-section as a pavement of distorted
round objects (see Fig. 1). The design of the model
used to detect the fibre boundaries was influenced by
the observations that the fibres tend (i) to have visible
edges, (ii) to be convex in shape and (iii) to be
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separated from neighbouring fibres by gaps (caused by
a slight shrinkage during preparation). The basis of the
model is the idea that the boundary of a convex object
can easily be reconstructed by joining points on a set of
radial vectors which emanate from a point near its
centre.

The task of detecting the fibre boundaries was broken
down into three main steps :-

1. The generation of object centre cues
2. The generation of multiple boundary cues
3. The instantiation of the boundary

The knowledge used to detect the fibre boundaries is
summarised in Table 1. This is organised according to
four levels of abstraction, namely those of the raw
image, the fibre centres, the boundary points and the
boundaries. The abstraction of data between one level
and the next is performed in a single cycle of cue
generation and evidence gathering as an interpretation
of the image is progressively refined.

CENTRE CUE GENERATION

The purpose in identifying object centre cues is to
focus attention on those locations in the image where
objects of interest are most likely to be found. The
strategy adopted reflects the model of a mainly convex,
blob shaped feature which is used to guide boundary
detection. Centre cues are defined as the locus of
points maximally distant from a boundary found in an
approximate edge segmentation. This process is
illustrated in Figs. 2-5. The original image of stained
skeletal muscle fibres is shown in Fig. 1 The first step
in the process is to generate a gradient map by taking
the difference between the original image and its

grey-level erosion. This and other morphological
grey-level operators are described by Serra9.

Next the bimodal separation of grey-levels in this edge
map is enhanced using a non-linear grey-level
relaxation algorithm8 to first stretch the distribution of
grey-level values in the image and in a second pass to
cluster values around the nearest peak (light or dark)
in a grey level distribution histogram of the transformed
image. The result of this pre-processing is shown in
Fig. 2.

The selection of a threshold to give an approximate
segmentation of the relaxed edge image is not critical.
The result of automatic thresholding is shown in Fig. 3.
The apparent completeness of the edge segmentation is
beguiling. We have investigated the use of both binary
and grey-level opening and closing operations10 but
have found it impossible to complete the segmentation
using them. This is, however, of no importance since
the objective here is to obtain a reasonable
approximation which is applicable over a broad range
of conditions.

A distance transformation is applied to the results of
the segmentation using a two-pass propagation
algorithm2 (Fig. 4). The peaks in this map are
identified using a second, rapidly convergent, iterative,
two-pass propagation algorithm. These peaks are
maximally distant from the edges initially detected and
their positions roughly correspond to the centres of the
muscle fibres in the original image, as shown in Fig. 5.
The peak positions are used as cues to initiate the
search for fibre boundaries. The generation of more
than one centre cue per cell, which sometimes occurs,
does not pose a serious problem since the similarity of
the boundaries subsequently instantiated can easily be
recognised at a later stage.

Table 1. Summary of Knowledge Utilisation

Level of
Abstraction

A. Raw Image

B. Candidate objects

C. Candidate
boundary points

D. Candidate
boundary

A priori
Knowledge

Objects have edges

Centre of object
distant from edges

Radials cross
boundary

Edges perpendicular
to radials

Boundary not re-entrant

Objects are compact

Gaps next to
boundaries

Application of
Knowledge

Edge map

Distance transform

Search radius

Directional edge de-
tection

Ordering of radials

One boundary point
per radial selected

Radial continuity

Top hat edge model

Influence on
interpretation

Weak

Weak

Absolute

Weak

Absolute

Absolute

Weak

Weak



Figure 1. Image of stained section of skeletal
muscle fibre.

Figure 2. Grey-level image of edge strength
from Fig. I after relaxation labelling.

Figure 3. Initial boundary segmentation. Figure 4. Distance transform of initial seg-
mentation.

Figure 5. Centre Cues.
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BOUNDARY CUE GENERATION

Boundary cues are generated by searching for the m
most significant grey-level edges along a set of n radial
profiles centered on each centre cue, as shown in Fig.
6. Each radial grey-level profile is formed by
averaging grey-level values in a direction perpendicular
to the radial path. This spatial averaging is justified on
the assumption that the radial lines cross the fibre
boundary at an angle close to 90 degrees. Each profile
is convolved with a first order derivative filter and the
location of the m largest edges found. The location of
these edges, a measure of the strength and the
direction of change in brightness across the edge (ie
light-dark or dark-light) are stored for use in the
selection of an optimal boundary path. The result of
boundary cue generation for a single centre cue is
shown in Fig 7.

t
detected edge points
(on radial search lines)

radial search lines

centre cue

boundary of neighbouring cells
extent of cell
computed boundary

Fig. 6 Boundary search strategy

BOUNDARY INSTANTIATION

The result of boundary cue generation is a table of n
ordered sets of m candidate boundary points. The next
step is to select the set of points representing the
boundary by tracing the appropriate path through the
table. The knowledge that the radials are ordered and
that the boundary is not re-entrant (see table 1) is
used to restrict the problem to the selection of a path
which passes through one (and only one) point in each
radial set. This is achieved using a dynamic
programming algorithm1 7. The boundary points are
selected on the basis that they are likely to lie on the
inside edge of a gap between adjacent fibres and that
radial continuity should be preserved as much as
possible. These constraints are embodied in a function

Figure 7.
fibre.

The set of boundary cues for a single

which assigns a cost to each of the possible pairings of
adjacent boundary cues. The dynamic programming
algorithm is used to find the path with the globally
lowest accumulated cost defined by the cost function.
This is taken to represent the set of boundary cues
which most closely match the true boundary. The
cumulative cost h of a path traced through n points x^
.. xn is:-

where a, b, a, /J and n are constants.

The first term G(xk), a measure of the significance of
the grey-level gap between fibre boundaries is given
by:-

G(xk) •{:
-A\8t\

otherwise

1 < i < m, m is a constant.

where gi is the normalised gradient of the edge at
boundary cue position i, and the boundary cue
positions are numbered sequentially from the centre
outwards. Gradient magnitudes along each radial are
normalised with respect to the largest gradient on the
line. Values greater than zero represent a transition
from light to dark in an outwards direction along the
radial. Values of less than zero represent a transition
in the opposite direction.

The second term R(xk-i,xk) is a measure of radial
continuity and is computed as:-
R(xk-Uxk) = flr/.t.! -n,k\) 1 £ i £ m; 1 < j <S m

n,k is the normalised radial distance of boundary cue i
along radial k.

The constants a,b,a and/? control the relative
importance of the geometric and grey-level edge
constraints in the model. The values used for these
constants in the experiments we report here were a=l,
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b=10, a =1, /S=2. The number of radial search lines
(m) was 40 and the number of candidate edge points
(n) detected on each radial line was 8. This means that
the radial continuity constraint was applied in
proportion to the square of the radial distance between
sequential candidate boundary points. The value of
coefficient b was chosen so that the magnitude of
components of the cost function concerned with edge
strength and shape were reasonably balanced for
typical fibres. The choice of this value was not critical.

The dynamic programming algorithm allows all paths
through the ordered radial sets of edge points to be
exhaustively searched to find the optimal (lowest cost)
path with computational complexity of only 0(nm2).
The result for a single boundary is shown in Fig. 8 and
the result for a complete field in Fig. 9. It is important
to note that the results of boundary instantiation are
not sensitive to the location of the centre cues.

Figure 8. Boundary through selected edge
points shown in figure 7.

IMPLEMENTATION

The results shown were obtained with images digitised
to 256 x 256 pixels with 6 bit grey-level resolution.
The images were obtained using a standard CCIR TV
camera coupled to a light microscope with an objective
magnification of x 40.

The software was implemented on both Magiscan 2
(Joyce Loebl) and CVAS 3000 (Visual Machines Ltd)
image processing systems and on a SUN 3/160 (SUN
Microsystems Ltd) workstation with an IPB 3000
intelligent frame store (Wolfson Image Analysis Unit).
The algorithm was coded in a combination of Pascal
and frame store microcode in each case. Typical
execution times for detecting a single boundary are 35
seconds on a Magiscan 2 and 11 seconds on a CVAS
3000 although it should be noted that no attempt has
yet been made to optimise the efficiency of the
implementation.

DISCUSSION

We have demonstarted that a strategy combining cue
generation with model-based boundary instantiation
can achieve results which compare well with those
obtained using more complex procedural
techniques3-5 . The methodology allows robust
performance whilst employing relatively simple
algorithms. This is demonstrated by the degree of
variability in the appearance of the fibres shown in Fig.
9 which have nevertheless been correctly segmented.
We have also demonstrated the flexibility of the
method by applying it sucessfully to a number of other
biological and industrial problems. Fig. 10 shows the
result of applying the boundary detection technique
(using the same model) to a slit microscope image of
corneal endthelial cells.

wmm

Figure 9. Boundaries for all fibres within region
of interest.

Figure 10. Detection of boundary of endothelial
cells in the cornea.
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In addition to providing an effective method of
collecting, organising and evaluating evidence, our
strategy is also computationally efficient.
Attention-focussing behaviour ensures that the system
concentrates computing power on the collection and
evaluation of relevant evidence. The time taken to
detect the boundary of a muscle fibre (11 seconds on a
CVAS 3000) is similar to the average time per fibre
taken by a human being given the task of manually
digitising similar boundaries for a large number (>100)
of fibres. Considerable improvement should be possible
given some attention to the details of implementation.

There are a number of improvements to the method
which could easily be made. Immediate requirements
include the addition of mechanisms for recovering
from errors in the boundary detection process and for
'recognising' fibre boundaries. For example, the
gradient of the cumulative cost associated with a
particular boundary could be used to focus attention on
localised sections which tended to violate, if only to a
limited degree, the specification of the model and the
total cost associated with a boundary could be used as a
figure of merit for the degree of match between the
model and its instantiation. The system might then
treat all boundaries detected as candidates to be
manipulated at a higher level. A model incorporating
topographical features of muscle tissue could be used to
focus attention on the likeliest interpretation at that
level.

Fundemental work is required to develop more general
methods of object cue generation, to achieve more
explicit knowledge representation and to provide a
more sophisticated, trainable scheme of control. These
issues are currently being addressed in a separate
programme of research which is described elsewhere in
these proceedings4- u - 12.
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