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This paper presents recent work on iconic model-
matching. The idea of iconic feature evaluation is
reviewed, and methods for setting adaptive noise
thresholds for use in feature combination are described.
Extensions to the adaptive thresholding technique are
explained and illustrated, and the relevance of this
technique to feature combination is discussed. Finally
demonstrations of the performance of the system are
shown, with particular reference to the discrimination
ability of the method with multiple models.

This paper describes a method of model-matching,
applicable as a verification procedure within a
knowledge-based vision systems containing three-
dimensional geometric models. Most approaches to

object verification in model-based vision merely extend -

the initial model instantiation process which uses a
symbolic edge description, and thereby refine the initial
hypothesis until a solution is reached. Symbolic edge
descriptions are always inaccurate since it is difficult to
translate real world scenes in to a set of discrete
entities!. The iconic approach returns to the original
image and can thus make use of information missed by
the low-level processes.

If a three-dimensional object is to be represented as a
geometric model the model description should be
analogical, to reflect the spatial isomorphism between
the two entities. Geometric models used in vision
systems are usually converted into an entirely symbolic
form, for example graph structures?, or bit strings®, to
facilitate matching with a symbolic image segmentation.
A preferable approach is to use the spatial isomorphism
present in the model and match it to an iconic
representation of the image. Thus instead of simply
applying global operations to the image to produce a
fixed set of data structures, which can only be used
uniformly, computational procedures of arbitrary
complexity may be devised to manipulate the
information in the image. Reliance for the final
classification on the output of region or edge
segmentations then becomes unnecessary.
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ICONIC MODEL-MATCHING

There are a number of methods available with which
iconic model-matching to an image can be performed.
One example is image rendering, which was discussed in

particular by Besl and Jain®. They believed that a
common fault of vision systems is that "“high-level
results are not projected back into a low-level form for
final error checking" and said that "more research is
needed in this area". Their proposed solution to the
problem was to use computer graphics techniques in
conjunction with the object models to predict the sensor
data. This prediction could then be tested for its
correspondence with the pixels in the image. On a
sequential machine this is a very slow process and
excessively sensitive to minor detail. In any real image,
and particularly in natural scene analysis, it is
impossible to predict the conditions in the image.

Another similar iconic/iconic process, namely normalised
correlation, suffers from the same problems. In this
technique template functions are produced which specify
the expected binary or grey-level distribution of the
image. The image is convolved with these masks and a
metric used to measure the "best" or "sufficiently good"
matches in the image. Correlation is more flexible than
image rendering, as it is less dependent on local
properties, and in addition deformations of the image are
allowed. It still however relies on specifying what a
portion of the image will look like and performing a
quantative match., This is very difficult, and requires a
much deeper knowledge of the conditions in the image
than a qualitative matching process.

Knowledge-based iconic matching procedures used by
model-based vision systems are uncommon. Bolles and

Cain® used a very simple procedure as the final
verification check in their vision system. They aligned a
two-dimensional object’s outline with a hypothesised
instance in a binary image and matched the black-to-
white transitions in the binary image. Since they were
predicting from a model they could adapt the procedure
only to take account of directly confirming evidence
from the model. A transition across the boundary of the
object from the object colour (black) to the background
colour (white) was taken as positive evidence. A black
object colour with no transition to white background
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was taken as neutral evidence. Anything else was
negative evidence.

A more sophisticated iconic matching procedure has been
described previously®. Viewpoint dependent predictions
were made about the two-dimensional features in the
image, hypothesised from a three-dimensional model.
Additional information was associated with each feature
to make stronger predictions, thus allowing a more
selective test process. Individual feature evaluations
were performed by adapting a typical data-driven edge
detection process to work in a predictive manner. This
gives similar information to unthresholded, unsegmented
edgelet output produced in the first step of most edge
detectors. Since the effort is focussed on the predicted
areas rather than being applied globally it is much
faster, as well as not merely being confined to step
edges. The important task is then to combine these pieces
of information meaningfully.

A very simple method of combining individual feature
evaluations into a model matching procedure has already
been described. The process was used for object
verification in the Exemplar task of the MMI-007
Alvey consortium’. This paper expands on the method of
thresholding outlined previously, and describes further
work on feature evaluation combination.

DERIVING ADAPTIVE NOISE
THRESHOLDS

The Initial Approach

All classification processes employ some kind of
threshold. The decision about the level at which this
should be set is very difficult, and is often rather
arbitrary. As Marr says "It is a matter of unhappy
experience that whenever we have to set a threshold in
an image-processing task, we usually have problems .."%.
This problem arises very commonly in edge detection,
where a threshold normally decides which ‘"edge
measures”, for example gradient slopes, are sufficiently
significant to indicate the presence of an edge, rather
than the presence of noise.

The feature evaluation process which we are considering
takes the predicted end-points of a vector in a Gaussian
blurred image and differentiates parallel to the feature
at constant intervals along the vector. The average
magnitude of the maximum/minimum gives a measure of
the edge-ness of the feature, the gradient of the zero-
crossings the bar-ness. The problem is to find at what
level these measures are significant, and how they can be
related across different types of features, different
frequency filters and separate images, so an individual
feature evaluation can be put in context with any other.

The first step in finding a solution was to find the
expected response of any "type" of feature evaluation to
noise. The result obtained from evaluating a predicted
line on a template could then be weighted using this
value. So, after such a normalisation factor has been
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applied, a value of one would signify that the feature is
equal to the expected noise value. A value of some
degree greater than one (the degree depending on how
superior to the noise value the magnitude of the feature
is) would imply that a feature had been found. A
fractional value would be obtained if the feature
strength is poorer than the noise response.

To achieve this it was necessary to discover which
parameters of the evaluation affected the expected noise
response value, and what simple measurements
characterised these parameters. Suitable inexpensive
measurements must be found, since each new image
requires its own noise thresholds. This is of course
desirable, because the thresholds are then automatically
adapted to suit that particular image.

Initially an experimental investigation was conducted. A
Monte Carlo simulation approach was taken. Randomly
placed feature evaluations were performed on a sample
set of natural scene images. Some plots of the expected
scores obtained are shown below in figures 1 & 2 for the
edge operator.

For an edge feature the mean of the noise samples is
independent of length and, to a close approximation,
independent of the image search area perpendicular to the
feature. Bars are also independent of length, but the
search area parameter, since it controls what sized bars
can be discovered, cannot be deemed constant. The other
parameters are the filter size (the sigma of the Gaussian)
and the image itself.

Since the measure denoting a feature is an average of the
evidence found along it, it is unsurprising that the
expected noise value is approximately constant with
length, although it is to be expected that the
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Figure 1. Expected scores for edges in a sample image

at constant width.
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Figure 2. Expected scores for edges in a sample image
af constant sigma

distribution of scores of randomly sampled short
features would vary from that of long. For a long
feature more values are used to obtain a single "averaged"
score, so the range of scores is likely to be smaller.
Since assuming that the expected noise response is
constant with length is a gross simplification of the
problem, this avenue was explored initially.

First it was necessary to determine a relation-
ship between the changes in threshold level obtained in
the various images. It was assumed that this level was
related to some measure of the "contrast" in the image.
Since the evaluator is in reality a second difference opera-
tion (the difference is taken between the maximum posi-
tive and negative responses in the first difference) con-
trast measures in second difference functions were
explored. The best results were obtained by using the
standard deviation in a difference of Gaussian (DOG) fil-
tered image. Different frequency DOGs were used to
match the different frequency Gaussians. As can be seen
from figure 3 there was a simple linear relationship
showing that the noise response was directly proportion-
al to the contrast measure.

Extending the Approach

The model-matching results described previously®’ used
the above method of thresholding feature scores.
However the simplification which assumed that one
threshold was applicable to features from a few pixels
long to several tens of pixels proved to be too
restricting. It is possible to get round this problem by
the usual methods employed in model-matching schemes,
namely to introduce a notion of saliency and weight the
scores -twice, firstly by their strength (our noise
threshold) and then secondly by some metric which
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Figure 3. A graph of expected scores/contrast for a
variety of outdoor scene images.

attaches more importance to larger features. However
such a scheme is not in accord with the approach we are
pursuing. We would like the proportional weighting for
different length features to be determined automatically
by the image, and the evaluation type. For this reason we
started exploring the distributions produced by the
Monte Carlo random noise trials, instead of looking
merely at the mean values.

Figure 4 shows an example of the change in distributions
with feature length. From log plots it can be seen that
the functions consist of two exponentials. From the
manner in which these two distributions vary between
images of different composition it seems reasonable to
hypothesise that the two exponential functions arise
separately, one from the amount of random noise in the
image, the other from the amount of structure.

At present we have no way of generating these two
components from simple measurements in the image, in
the manner described previously. Instead we are
investigating generating the distributions of arbitrary
length feature tests from that for vectors of length 1
pixel, since sampling vectors of length 1 in the image is
a sufficiently simple process.

Once these distributions have been produced for a sample
set of feature lengths and feature scores for an image,
the tails of the functions can be used to provide
probabilities of a feature of a certain length producing a
score at least as good as the one recorded. This gives us a
number of probabilities, P, - P, ONE from each feature

tested, Given that our initial hypothesis is that each
piece of evidence occurred at a random point, at an
insignificant level, then each test is independent. A
standard method of combining probabilities arising from



2000
0 -
feature length =1 score
2000
0 L
feature length = 50 score
2000
0
feature length = 100 score

Figure 4. Three graphs showing the distributions of eval-
uation scores when edge features of different lengths
are sampled randomly in an image.
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Figure 5. A graph showing scorellength for each fea-
ture evaluation on a correctly positioned car template.
Significant chi-squared distribution points are shown.
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independent tests on different groups of data, so as to
assess the probability of the overall test, is to use the
statistic :
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which has a chi-squared distribution with 2k degrees of
freedom. Standard tables exist to calculate the signifi-
cance of a value resulting from a chi-squared distribu-
tion. See figure 5 for an example of a set of feature eval-
uation scores for a template positioned on a car, shown
with a series of significance levels of the chi-squared dis-
tribution.

Our threshold measure is similar to the "reliability”
statistic that Goad uses. His measure is of the
probability that the edges he has matched to could have
been discovered to that degree, given that they arose
from noise. However his overall statistics need to be
more complicated than ours because he also has to take in
to account the "plausability” of the edge detector

output®.

The kind of thresholding we have described above is
image specific. Some of the implications of using this
type of thresholding will be discussed below.

ISSUES OF FEATURE AGGREGATION

All the noise measurements and thresholds discussed
above have been global., An interesting extension to the
method is to adapt the measures to be more specific; to
be either orientation dependent, or sensitive to only the
immediate surroundings of the car.

To set orientation specific noise thresholds s
particularly useful in our example of matching car
templates. On any model different sorts of features
occur with varying frequencies. On a car most of the
features project to either horizontal or vertical lines
(assuming that the car is upright on a horizontal ground
plane), but there are just a few obliquely angled
features. Obviously if the image background consists
largely of horizontal and vertical lines, as is quite
common in built-up scenes, then finding these sloping
features is of particular significance, and they should be
weighted as more salient. If isotropic expectation
measures are taken this would adapt the score of a
feature in a particular direction according to the number
of features in that direction in the image. It is similar to
the effect that humans experience when, after being
exposed to high contrast gratings, the eye has reduced
sensitivity to features in that same orientation at the
same spatial frequency®.

A second area of investigation is local-area threshold
adaption, The contrast measures discussed above are taken
across the whole image. This has the effect that the
evaluator finds it more difficult to "see" a car in a
cluttered background. Intuitively this sounds right, if
the cluttered area is around the car. An alternative is to
determine the noise thresholds from contrast measures
taken from only a restricted portion of the image,
centred on the template. Then if the car is parked in a



score for template when threshold is adapted to
local area is 1.6 times score in full image.

Figure 6. When thresholds are determined from the
less cluttered area surrounding the car (indicated on
image) then the matching score of the same template is
increased.

densely populate car park, taking the local area contrast
reduces the likelihood of discovering the car, however
the reverse is true if the car is reasonably isolated. See
the example in figure 6.

In model-matching schemes it is common to use some
notion of hierarchy. In our case we would wish to allow
initial "gross" matches to give an indication of whether a
more detailed study of that template is appropriate. A
“salient features”" evaluation should obviously be quicker
than the full match, but should have the same general
properties, ie degradation with noise, and should

therefore allow any search process based on the iconic

matcher to be more efficient.

The issue of saliency is closely related to the noise
thresholding and feature aggregation method. If the
features on the model are divided into sub-classes
according to their direction in the image than the
directional noise statistics automatically decide which
features are more salient, due to the composition of the
background in the image. The noise thresholds also
determine which feature types are more important. The
expectation values for bar features, for example, is much
lower than the expectation values for edges. This is
because a bar is a second order feature, and more difficult
to find in the image by chance. Therefore the "score" for
a correctly found bar of similar intensity to an edge is
higher. Combining the features according to length-
related probabilities also automatically sets the saliency
of longer features higher than shorter features. Thus
certain feature types and long features are pre-judged to
be more salient and can always be use in a "salient
features” evaluation. Others depend on the particular
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image, and can only be determined after the image has
been assessed.

Normally the total set of features discovered from an
edge detector have been discovered at a variety of scales.
Combining features across separate scales is a very
difficult and largely unsolved problem. Since our model-
matching process is predictive the problem we have is
not so great. Every feature has associated with it, either
a feature "size", or "extent", as appropriate. For example
a bar knows its size in pixels in the image. An edge
knows the length of step, ie its "extent" before another
feature is reached. From this information it is possible
to calculate either the optimum frequency, or any
allowable frequencies in which to evaluate a feature. So
a feature can be constrained to produce a score only once,
and our thresholding measures allow us to combine
uniformly across different-sized Gaussians.
Alternatively, a single frequency Gaussian can be used,
and although some features will not score optimally,
they will only be evaluated if they are visible at that
frequency.

The issues above are all image dependent. Obviously
there are also object dependent matters. For example one
question that has not been addressed so far is the
strength with which different features on a model occur
in the image.

USE OF THE MODEL-MATCHING
PROCESS WITHIN A MODEL-BASED
VISION SYSTEM

An issue, not previously addressed, is that of setting a
cut-off value for the acceptance or rejection of a model
instance. Earlier work was with only one modelled
object. It was assumed that the cueing process which
triggered the model verification procedure had correctly
picked an area in which there existed a target object. This
assumption obviously will not be comect so we must
have a criterion with which to reject the "best” match if
it is not sufficiently good.

A number of initial model positions will be presented
to the iconic matching technique. Small fragments of
structure can generate very distant car templates. These
can be ruled out immediately since the majority of
features on such a template are only a few pixels long,
making any detailed analysis inappropriate.

Although the feature combination technique is
independent of the number of features tested, on more
distant cars, many features on the car are either too
short, or have too small an "extent” to be evaluated. In
these cases an unreliable score can result since there is
much evidence present, but few feature tests. It is
therefore necessary to consider a model-match with a
very small proportion of its features evaluated as
unreliable. '

In general templates thrown on the image at random
locations have middle-order, insignificant probabilities.
These probabilities increase as the template is thrown on



an area overlapping a car or on another highly structured
object, so a higher probability suggests that an
interesting area has been discovered, and the best instance
in that area can then be explored further. If a model
instance is generated, based on features of the car having
been found and labelled, then these features are ignored
by the model-matching process, thus the matcher is
looking for further evidence for a car, other than that
already found.

The final probaility from the chi-squared distribution
for a correct match tends to be very high. For this reason
we do not look-up these probability scores, but use the
chi-squared distribution value, weighted by the degrees
of freedom.

DISCRIMINATING BETWEEN
MULTIPLE MODELS

An additional problem we are now faced with is
multiple models. It is probable that the initial analysis
will only cue "a target object" instead of a particular
model, especially if the differences between the models
is fairly small, for example a hatchback car versus an
estate car. In this case the verification process is applied
twice, using both models. The results should clearly
disambiguate the two models, by indicating a much
stronger fit for the correct instance. See the example
below, in figure 7, which demonstrates the "cross-over"
of the scores for the evaluation of a Chevette model and
a Cavalier estate model when applied to a series of
vehicles. Both models were initially fit to the same
data, then separate search processes were applied using
the different models. The relative scores are the best-fit
solutions to each model.

Chevette model
C. Estate model
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Chevette Fiesta Cortina Estate

Figure 7. Shows the relative scores of the best-fit
Chevette hatchback model and Cavalier estate model
to a series of different vehicles.
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CONCLUSIONS

The technique of iconic feature evaluation has
proved both fast and effective. Using a model-based
approach has allowed many specific tests to be made that
improve greatly on the performance possible by data
driven techniques. One of the most important issues for
the technique is the combination of the individual iconic
feature evaluations in to a model-based iconic matching
process. The idea of adaptive thresholding works very
well, and has many interesting extensions, some of
which have been described here. The demonstration of the
selectivity of the matching process to different models
in the same general class proves the utility and sensitivi-
ty of this approach.
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