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ABSTRACT

This paper studies the use of the generalised
Hough transform to locate objects possessing
concavities. Hhen locating objects with internal
symmetries, ambiguities can arise which nay not be
resolvable in the presence of occlusions. On the
other hand concavities can help to lake object
location more accurate. The boundary orientation
distribution can be used to analyse the situation:
it shows that enhanced accuracy of location along
one axis may result in reduced accuracy in a
perpendicular direction. Finally, accuracy of
location is independent of the position of the
object localisation point.

This paper starts with the observation that a
problem arises when the GHT is used to detect
objects possessing concavities. In principle this
can lead to ambiguities in the location of such
objects, and it was felt necessary to investigate
the problem closely in order to find how its effects
could be minimised.

In section II we briefly describe the operation
of the GHT. Then in section III we consider the
problem posed by concavities, following this in
section IV by a discussion of the effects of
symmetries. In sections V and VI we investigate how
the accuracy with which an object can be located is
affected by its shape and by errors in the
estimation of edge orientation.

I INTRODUCTION

Although the Hough transform was originally
devised for the detection of straight lines as long
ago as 1962 (Hough 1962), it only came into wide use
in the image processing community after it was
're-discovered' by Rosenfeld in 1969 and further
developed by Duda and Hart in 1972. Subsequent work
applied the technique to the detection of circles,
at the same time making it more efficient by showing
how locally available edge orientation information
could be used to cut down the number of votes
accumulated in parameter space (ICimme et al 1975).
Later, the technique was applied to other specific
types of curve such as ellipses and parabolas before
Ballard finally generalised it so that it could be
applied to the detection of arbitrary shapes
(Ballard 1981). The resulting 'generalised Hough
transform' (GHT) retained the facility for making
use of local edge orientation information, and is
thus a highly efficient procedure.

More recently, Davies has found that one
advantage of using the GHT rather than the basic
Hough transform to detect straight edges is that
this enables objects such as squares and rectangles
to be detected directly - i.e. without further
high-level processing to deduce the presence of the
shape (Davies 1986). He has also shown how to
ensure that optimal sensitivity is attained while
using the technique to detect objects possessing
straight edges (Davies 1987b). Finally, he has
demonstrated that the GHT is exceptionally robust
and is therefore particularly suitable for
industrial (e.g. automated inspection) applications
(Davies 1984).

The author is grateful to the UK Science and
Engineering Research Council for financial support
during the course of this research.

II THE GENERALISED HOUGH TRANSFORM

The action of the GHT may be summarised as
follows. First, a Sobel or similar edge enhancement
operator is applied to the image, and the resulting
intensity gradient image is thresholded to find the
locations of the most significant edge pixels. The
location and orientation of each edge pixel are then
used to estimate the position of a localisation
point L within every object of a specific type
supposed to be present in the original image. All
such estimated locations of L are accumulated in a
parameter space which is, for the GHT, congruent to
image space. Finally, peaks are sought in parameter
space which indicate the presence and position of
objects of the chosen shape. For objects of other
shapes, the points accumulated in parameter space
are essentially incoherent and do not focus on
peaks: such objects effectively contribute noise in
parameter space, and are unlikely to interfere with
the process of locating the chosen type of object
(Ballard 1981).

The precise way in which the position of L is
estimated after locating an edge pixel can in simple
cases be analytic. For example, in the case of a
circle, L is found merely by moving a distance equal
to R along the edge normal. For complex curves, if
the edge normal orientation is 6, we move a distance
R(6) in a direction <?(9) from the edge location,
the values of R and <fi being obtained from a lookup
table.

As outlined so far, the orientation of the curve
has to be known in advance. However, if object
orientation is able to vary, we merely adopt the
strategy of augmenting parameter space in another
dimension, each plane in parameter space then being
used to detect the object in one of its possible
orientations. In what follows we simplify the
discussion by assuming the orientation of the object
is known. Finally, because of possible size and
shape variations, it will often be preferable to
save computation by using the GHT to look for

327
AVC 1987 doi:10.5244/C.1.44



features rather than for whole objects: suitable
features include holes, corners, lines, circular
arcs and so on. Again, we ignore such complications
in Hhat follows.

Ill THE EFFECTS OF CONCAVITIES ON OBJECT
DETECTION BY THE GHT

Before proceeding to study the effects of
concavities on object detection, it is relevant to
outline the problems that arise when objects possess
straight edges. Basically, for a simple convex
object, each edge pixel gives rise to a single vote
in parameter space. As described in section II,
this vote will be placed at the estimated position
of the object localisation point L. However, when
an object possesses a straight edge, this strategy
severely limits the number of votes accumulated at L
by the pixels on a particular straight edge -
typically only one or two votes being accumulated:
hence sensitivity is markedly reduced. Davies
showed that this problem could only be eliminated by
accumulating a line of points in parameter space for
each straight edge pixel, the appropriate length of
the line being equal to the length of the straight
portion of the boundary in the object being
detected, and the direction being that of the
straight portion of the object boundary (Davies
1987b). At a particular edge pixel, this direction
is estimated by taking the local edge orientation.

The rationale for this parametrisation of the
straight line is as follows. For a given edge pixel
whose direction indicates it is on the straight
portion of the object boundary, we accumulate a vote
at all possible positions of the localisation point
which would confirm this as being a valid straight
edge pixel. Though this rationale might seem clever
but somewhat ad hoc, Davies was able to confirm its
value on the basis that the GHT has to approximate a
spatial matched filter if sensitivity is to be
optimised (Davies 1967b).

The situation when concavities arise is closely
related to that for straight edges. In particular,
when a single concavity is present, each of the edge
pixels within the concavity has the same orientation

as one other edge pixel on the object boundary.
(But note that certain concavities can act as double
concavities in this respect - see Figure 1.) This
means that, for a particular range of edge orient-
ations, it is not known locally at the edge pixel
whether it is on that portion of the boundary within
the concavity or elsewhere. Thus there is an
ambiguity in our local knowledge of the position of
the edge pixel relative to the localisation point -
just as there is a multiple ambiguity in the case of
pixels on a straight edge - and there is no choice
but to accumulate two votes in parameter space for
such edge pixels. One could argue that the case of
a concavity is more extreme than that of a straight
edge, but in fact the straight edge gives rise to a
multiple ambiguity which involves accumulating a
great many points in parameter space for each edge
pixel, and this is computationally more serious.

For more complex types of concavity - multiple
holes, sawtooth edges and so on - the local
ambiguity increases, and with it the number of votes
that have to be accumulated per edge pixel, for at
least a proportion of local edge orientations.
Indeed, for spirals of many sorts and all cases of
holes, at least two votes have to be accumulated per
edge pixel for all possible edge orientations.

Though a potential problem has arisen with
concavities, we see that the rationale that enabled
us to cope with straight edges also permits us to
cope with concavities, and at the same time to
attain the maximum sensitivity. It is clear that
sensitivity is maximised since every edge pixel
contributes an equal amount to the peak, at L, in
parameter space: thus all the available 'signal' is
utilised.

IV SYmETRIES THAT ARISE FROM CONCAVITIES

Though we apparently solved the concavity
problem successfully in the previous section, this
was achieved by accumulating additional points in
parameter space. Such points lead to additional
'clutter' in parameter space which could conceivably
focus into unwanted peaks. This means that it is
necessary to examine whether the additional points
that are accumulated could make phantom objects
appear. Unfortunately, there are situations when
this can happen. In particular, if any object
possesses symmetries between separate parts of its
shape, then spurious peaks can appear in parameter
space. Consider the v-shaped object shown in
Figure 2. There is a 2-fold translational symmetry

Figure 1 A shape with a structured concavity

This diagram shows a concavity which must be classed
as a 'double' concavity: thus there are two points
in the concavity with the same orientation as point
P on the convex part of the boundary.

Figure 2 A v-shaped object and its transform

(a) shows a v-shaped object, and (b) shows its
transform. The main peak appears at the localis-
ation point L, and the subsidiary peaks appear at
equal distances D either side of it: D is equal to
the distance between the two prongs of the v.
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between the two prongs of the v, and hence there is
a local ambiguity for a particular set of pixels
about their location within the object. In this
case it is not the pixels within the concavity that
pose the problem, but those on the two convex
regions related by symmetry. This nay at first
appear paradoxical, but clearly such a situation can
only arise when a concavity is present - it is an
indirect effect of a concavity that convex regions
related by symmetry can arise. On applying our
normal rule for accumulating points in parameter
space, we find that there are (even in this simple
case of 2-fold symmetry) three main peaks in
parameter space. The largest is that corresponding
to L, at which all points on the boundary of the
object have contributed: the other two have equal
size corresponding to the much smaller numbers of
edge pixels that have contributed to them
(Figure 2). A variation on this situation is shown
in Figure 3 where the symmetry may be described in
terms of two translation vectors in two dimensions.

In such cases, the interpretation strategy that
must be applied is to look first for the largest
peaks in parameter space, and then to check whether
other peaks appear that could possibly have arisen
from such symmetries. Since these subsidiary peaks
will be at a predictable distance from the main
peak, they in fact provide useful additional
evidence that the given type of object is present.

It is interesting to consider how detection of
such an object will change if it becomes partially
occluded. The main possibilities are: (1) the main
peak will diminish in size; (2) either or both of
the subsidiary peaks will dissappear. If only one
of the prongs of the v-shape is visible in the
original image, then only one subsidiary peak will
be found in parameter space. Now the GHT is known
to be highly robust and to have excellent capability
for detecting objects that are even quite grossly
occluded. In this case, to interpret an image in
which only one prong of the v-shape is visible, we
must know that it is possible for two small roughly
equal peaks to appear in parameter space, either of
which may correspond to L. If one of these is
larger than the other, it is most likely that it
will correspond to L, though some ambiguity will
remain. In such cases symmetry has permitted the
suppression of information that could have been used
to locate the object unambiguously. This phenomenon
will clearly generalise to more complex object
shapes, where higher order symmetries can be
present.

Although symmetry would appear generally to be a
disadvantage in locating an object (especially in
situations where occlusions can occur), this is not
actually so. Consider for example the following
case where a periodic structure is being sought
(Figure 4). In that case available edge locations
provide a barrage of peaks in parameter space, and
hence a relatively large amount of ambiguity in the
event of occlusions. However, ignoring possible
occlusions, there is also an enormous amount of
information on the longitudinal location of the
object. In fact there is much more information on
longitudinal location than there would be for an
object of equal size containing no concavities.
Furthermore, there is much greater accuracy of
longitudinal location than for lateral location,
again because of the presence of concavities. He
note also that the additional accuracy is not just
due to the increase the number of edge pixels for
that size of object, but arises partly from the
changed distribution of edge orientations within the
shape.

HOW ACCURACY OF OBJECT LOCATION IS AFFECTED
BY SHAPE

In this section we model the situation described
above by examining the distribution of object
boundary orientations. For a circle this will be
uniform. It will also be uniform for an object such
as a washer which contains a hole and for which this
concavity has not changed the capability for
measurement of object location - supposing that we
normalise to the situation for objects of constant
total boundary length. (The reason it is necessary

Figure 3 An object containing holes and its
transform

In this case the original object (a) is a bracket
containing holes, and the symmetry is describable in
terms of two translation vectors in two dimensions,
(b) shows the transform.

L

Figure 4 A periodic structure and its transform

(a) shows a periodic comb-like structure, which
gives rise to a barrage of peaks in parameter
space (b). The periodicity provides an enormous
amount of information on the longitudinal location
of the object, though there is a risk that the
transform will be misinterpreted if gross occlusion
occurs.
For a linear n-fold symmetry, 2n-l peaks appear in
parameter space; their magnitudes are proportional
to the relevant binomial coefficients, f**"1)
(i=0,l,...,2n-2), but (as here) the central peak at
L normally has increased size because of the
non-periodic parts of the shape.
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to normalise our results in this particular way is
that on multiplying object linear dimensions by M,
we are effectively multiplying the number of
independent Measurements of x and y object centre
location by M, so accuracy is increased, or errors
are reduced relatively, by a factor VM.) For a
more instructive example, take the E-shape of
Figure 5. In this case the distribution of object
boundary orientations 6 is f(6), which is shown in
Figure 6. Taking N K as the number of vertical
boundary points giving information on the x
coordinate, and N y as the number of horizontal
boundary points giving information on the y
coordinate, we find that N ~ 2NK, which means that
the y coordinate can be found ~1.4 times more
accurately than the x coordinate. Finally, taking
the comb shape shown in Figure 4 we obtain the
distribution of Figure 7: this has N, I O N , and so
the x coordinate can be measured ~3 times more
accurately than the y coordinate.

To summarise, we note that object location
accuracy depends strongly on object boundary length,
and that a preponderance of one or another orient-
ation in the distribution of boundary orientations
means that object location will be defined more
accurately along one axis than another; in addition,
increased accuracy of location parallel to this
preferred axis means reduced accuracy of location
along a perpendicular axis, for objects of given
boundary length.

It will be clear from the above discussion that
we can obtain further information on the accuracy of
object location by detailed analysis of the boundary
orientation distribution f(6). Note first that the
required information has periodicity n, since an
edge at a particular angle of gives the same
positional information as one which is inverted - or
which has orientation <x+ ». If we expand f(6) as a
fourier series,

f(8) = ae/2 + a(cos 6 + a^cos 29 + ...

+ b,sin 9 + b^sin 29 + ... (1)

where

Figure 5 An E-shaped object and its transform

Extended contributions to the transform (b) from
each of the straight sides of the original shape (a)
are suppressed in this diagram in order to clarify
the effects of symmetry.

(1/ir)

(1/*)

cf(8> cos n6 de

f(6) sin n6 d9

(2)

(3)

then the above discussion, and the requirement that
we should match f(9) to a bivariate normal error
distribution at L, shows that we are only interested
in the variations produced by the terms in cos 29,
sin 29. In particular, the term a./2 gives no
variation; the terms in cos 9, sin 6 give a
variation with the wrong periodicity; and the higher
order terms give a variation which is faster than
required for the present purpose. Thus a good model
of the positional accuracy problem can be obtained
by examining how the terms in cos 29, sin 28
modulate the constant term. Particularly important
are the amplitude of the variation and the axis
along which the variation is largest. By writing
the relevant terms in the form

g(8) = ao/2 + cacos(28 - *)

we find the amplitude as

the high accuracy axis being given by

V = arctan(b4/aa)

Carrying out this computation for a shape in
which a proportion p of the boundary has (edge
normal) orientation close to ei or <* + •» and a
proportion q = 1 - p has orientation «•+ */2 or
* + 3ir/2, we find:

(4)

(5)

(6)

a. = (1/ir)I f(9) d8

= k(p + q) = k

= (1/ir) I f(9) cos 29 d9
-it

= k(p - q)cos 2of

= (1/*) f f(8) sin 28 d8
= k(p - q)sin 2 of

Hence

ca = k(p - q)

and * = 2<X

(7)

(8)

(9)

(10)

(11)

If the object has perimeter N pixels, the effective
number of pixels providing information about its
location parallel to the u-axis (at an angle <x to
the x-axis) is N u - pN and the number providing

f(6)

n 2-rc

e

Figure 6 Distribution of boundary orientations for
the E-shaped object
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information about its location along a perpendicular
axis is N v = qN. From equations 7-9 He now deduce

P = <ao + ca)/(2ao)

q = <ac - ca)/(2a.)

(12)

(13)

He then get the following values for the effective
numbers of pixels:

N(ao + ca)/(2ao)

N(a. - cx)/(2ao)

(14)

(15)

These formulae clearly give the expected results
when ca= 0 (q = p) and when cx= ao (q = 0), and are
valid for any object (such as a line, square,
rectangle, box or comb) which has all its edges
orientated along or perpendicular to a given axis.
However, the model presented here indicates that
these formulae are more generally valid for objects
of all shapes and orientations. Applying these
ideas to some of the features that are commonly used
for complex object location and recognition tasks,
we find that small holes and corners both have a
very small coefficient ca and hence are guaranteed
to provide reasonable accuracy in all directions.

The fact that we can draw ©-distributions in
this way, and deduce measurement accuracies
independently of the method of detection, indicates
that we have found a fundamental and useful shape
descriptor. It also means that our results will
have more value than they would have if they were
only relevant to some particular specialised
technique. On the other hand, the philosophy was
obtained from consideration of the GHT, implying
perhaps that it is capable of achieving results that
are limited more by fundamental properties of shape
than by its own characteristics. In this respect we
note that the GHT is not an arbitrary technique but
is derived from, and closely related to spatial
matched filtering, which in turn is known to give
optimal signal-to-noise ratio in locating objects
(Davies 1987a); in addition, accuracy will be
strongly dependent on the possibility of discerning
object positions when the reasons for error are
fundamentally linked to the presence of noise.

VI THE EFFECTS OF ORIENTATION ERRORS

In spite of what was said in section V about the
GHT - namely that its likeness to a spatial matched
filter makes it highly efficient at suppressing
image noise - there is some doubt about whether it
could in practice realise the object location
accuracies indicated above. The main reason for

f(e)

this doubt is the fact that every edge pixel is used
to provide an independent estimate of the location
of L, this estimate being limited by the accuracy
with which edge orientation can be measured locally.
It has frequently been pointed out that an error iQ
in the estimation of edge orientation will at a
distance R lead to a positional error R46 (Ballard
1981, Davies 1987a). This clearly results in an
overall lowering of the accuracy of location, though
intuition suggests that if L is located in a
particular position - e.g. near the centroid of the
object boundary (Davies 1987a) - then the overall
error will be minimised. It should also be pointed
out that edges are frequently 2-3 pixels thick, and
some radial error will consequently arise from this
source: however, for objects whose linear dimensions
are more than "40 pixels in size, orientation errors
in the location of L will predominate - if only
because common edge detection operators such as the
Sobel permit orientation to be estimated only within
~1°. He shall therefore ignore radial errors and
concentrate on azimuthal errors in L in what
follows.

To obtain a clearer view of these azimuthal
error3, consider Figure 8. In this case we have a
circle, and the localisation point is at an
arbitrary position near one end of it. Rather than
estimating the effects of azimuthal errors directly
on L, we here examine the problem from a different
point of view. If the estimated orientation at a
particular edge pixel is subject to error SQ, then
there is a local uncertainty about which part of the
object boundary the edge pixel is on. In fact we
can mark out a section B of the boundary at which
the edge pixel could be. (For simplicity we here
assume that there is equal probability of the edge
pixel being at any of these locations and zero of it
being elsewhere on the boundary. This simplyifying
assumption helps the calculation, but will not

A
2TC

e

Figure 7 Distribution of boundary orientations for
the comb shape

Figure 8 Effect of edge orientation errors on the
transform of a circle

Here the transform of a circle is being calculated
for localisation point L. Errors in edge orient-
ation at edge point E mean that is not certain which
of the points within error arc B it corresponds to.
As a result the estimated position of the localis-
ation point L may be any of the points on the
inverted error arc I. The final error distribution
at L is the result of accumulating all possible
inverted arcs of type I.

331



affect the generality of our conclusions.) Next, we
make successive assumptions that the edge pixel is
at each of these locations and Bark the correspond-
ingly deduced positions of L. For a circle, this
•eans that L Bust lie on an arc which is an inverted
fora of the error arc B. Repeating this for all
edge pixels gives an isotropic set of error arcs
similar to that due to B. It is noteworthy that the
fact that some edge pixels are closer to L than
others has had no particular effect.

This is a somewhat remarkable result and
deserves cement. First, if L is taken as the
centre of the circle, the situation reverts
naturally to the usual situation, wherein the
accuracy can be calculated in tens of the azimuthal
error subtended at the centre as a result of the
edge orientation errors. Second, we can always
assume a best case position for L (here we would
take the centre) and then deduce another location
for L by adding a constant vector to L or by adding
it directly to each of the vectors from the edge
pixels to the original L. Thus the reason for the
errors being independent of L is that no additional
error can result frc* adding a constant vector to a
given vector.

However, it is also necessary to determine why
the previous view of the situation was erroneous.
Imagine we select a position of L on the circun-
ference of the circle. Then it appears that
orientation errors have no affect for nearby edge
pixels. But in fact they have a marked effect,
since as soon as it is admitted that we do not know
exactly what the local edge orientation is we do not
know which of a number of edge pixels we are
considering. Thus we ought to accumulate a range of
possible locations for L in parameter space. This
means at least that there is an upper limit on the
accuracy with which an edge pixel can predict the
position of L. On the other hand there could be a
lower limit to the accuracy, which results from edge
orientation errors adding to the basic inaccuracy at
large distances. However, we have seen, by
calculating the azimuthal error as resulting from
the ambiguity in the positions on the circumference
at which the located edge pixel can be taken to lie,
that we obtain a lesser error, which should be
regarded as a lower limit on the error of location.

As an example, we consider the situation for an
ellipse with semi-axes a and b and high eccentric-
ity. In this case the various arcs of constant
angular error on the boundary vary widely in length.
If p is the local radius of curvature, then the
length of the corresponding arc, and of the
resulting error arc at L, is pie. This will vary
from (a*/b)ie to (ba/a)/6 for various positions of
the edge pixel on the ellipse. The result is that
the distribution of points in parameter space near L
is a very much flattened roughly elliptic shape
whose ratio of major to minor axes is ~(a/b)*. As
the original ellipse becomes more elongated the
approximation we have taken eventually breaks down,
since (a"/b)rf8 becomes greater than 2a. However, it
is clear that in that case the longitudinal error
becomes equal to 2a - the length of the correspond-
ing straight line - while the lateral error becomes
so small that it will be dominated by radial errors
due to the width of the object boundary. Thus the
model we have adopted gives exactly the right
extrapolation to the case of a straight line, as
specified by Davies (1987b). On the other hand a
calculation based on working out the arc length
subtended at L by azimuthal errors resulting from
the relevant distance from the edge pixel would
predict totally the wrong distribution of errors in
L (namely, L would be known more accurately along
the length of the line than laterally).

A. appraisal of GHT positional accuracy

The ideas of this section have so far shown that
the position of the localisation point is not a
relevant factor in finding the accuracy with which
the GHT can estimate object location. They have
also shown that edge orientation accuracy is
important in helping to determine the position of an
object: i.e. the GHT is capable of extracting some
edge orientation information to refine the measured
position of an object. He now need to work out how
these results relate to those of section V.

In fact, section V predicted the relative
accuracies with which object location could be found
in two perpendicular directions. It did this on the
basis that the edge pixels have a given orientation
distribution f(8). However, we now note that this
calculation was based on a model such that a given
edge pixel gives a measure of object location normal
to the edge, with radial accuracy given by vr, but
gives no information on object location in the
azimuthal direction. Thus the GHT is well able to
meet this requirement and indeed should enable
somewhat higher accuracies to be achieved. To this
extent the model of section V is inadequate.
However, it does permit us to obtain simply a
lower limit on the available accuracy of object
location. For this we assume a basic accuracy of
<rr, and modify this in two directions taking account
respectively of the effective numbers of pixels, Hw
and Nv (see section V). Thus the error o> will in
the two directions be divided by factors VN^ and
«/N .

VII CONCLUDING BEHARKS

This paper has examined the effects of
concavities on the performance of the GHT. Perhaps
surprisingly, this seemed to lead to problems only
in cases when specific symmetries arose. Then
additional peaks in parameter space appeared which
could lead to potential ambiguities which might not
be resolvable in cases of gross object occlusion.
On the other hand the additional peaks could in
principle be used to help with object location and
identification, and need not be regarded as
disadvantageous. Next, it was found that the
distribution of edge orientation values permitted
the accuracy of object location in different
directions to be estimated in a straightforward
manner: this approach appeared fundamental and
independent of the particular method used to locate
objects - thus representing an upper limit on the
available accuracy of object location assuming that
local edge orientation information is Ignored. It
was shown that the GHT is well able to meet this
accuracy, and should in fact be able to exceed it if
local edge orientation information is taken fully
into account.

The theory developed here shows how the accuracy
with which an object may be located depends on
(a) the total number of boundary pixels and
(b) their relative orientations. It also makes
clear that, for a given boundary length, enhanced
accuracy of location parallel to one axis is matched
by reduced accuracy of location along a perpen-
dicular axis. In addition, small objects need not
be less accurately locatable than large objects if,
because of their more complex shapes, they have
similar boundary lengths. For example, a small
object with many holes or with a sawtooth edge will
be very accurately locatable.

In addition, it has been found that the accuracy
of location obtainable using the GHT is independent
of the position of the object localisation point.
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Finding the limits of object location accuracy
is vital not just directly - e.g. in getting robots
to assemble precision parts - but also for
inspection purposes, e.g. when the dimensions of
complex machinery must be measured as accurately as
possible (within the available resolution) by
precise location of individual components and
features. In this respect the paper has been able
to ascertain a number of the inherent measurement
limitations of the GHT and related techniques.
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