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It is known (Longuet-Higgins 1984) that if two
spherical images of a visually textured surface,
from f in i te ly separated viewpoints, allow more
than one 3D interpretation, then the surface must
be part of a quadric passing through the two
viewpoints. It is here shown that this quadric is
either a plane or a ruled surface of a type f i r s t
considered by Maybank (1985) in a study of
ambiguous optic f low f ields; and that three is
the maximum number of interpretations that the
two images can sustain. An explanation is
offered for the fact that two images of just 5
points general ly permi t two d i s t i nc t 3D
interpretations,

1 Introduction

A much discussed problem in computer vision
(Hay 1966; Ullman 1979, Tsai & Huang 1981a,
1981b; Longuet-Higgins 1984a, 1984b; Maybank
1985; Subbarao 1986) is the degree of ambiguity
of a pair of 2D projections of a scene; under what
circumstances are they susceptible of more than
one interpretat ion, and what is the maximum
number of i n te rp re ta t i ons that can be
entertained in exceptional circumstances? The
problem arises when a camera is in motion
through a r ig id scene (Lee 1974; Nakayama &
Loomis 1974; Koenderink & van Doom 1976) and
i t is required to determine the notion of the
camera, and the structure of the scene, from a
pair of photographs taken one after the other
(Longuet-Higgins 1981). If the t ime interval
between them is very short, the problem reduces
to that of determining the linear and angular
velocity of the camera from an "optic f low f ield"
(Longuet-Higgins and Prazdny 1980); a recent
paper by Maybank (Maybank 1985) gives a
def ini t ive account of the ambiguities that can
arise in that case. The present paper extends
Maybank's results to the case in which the two
camera positions are f in i te ly separated.

The main existing results on the ambiguity of
pairs of photographs taken from discretely
separated viewpoints are as follows:

(a) If 8 or more points in the scene appear in
both photographs then in general their 3D
locations are unambiguously determined
(Longuet-Higgins 1981).

(b) If al l the points that appear in both
photographs happen to lie in a plane, there
w i l l be two dist inct interpretations (Hay
1966), or just one if the line joining the
viewpoints is perpendicular to the plane.

(c) An a lgor i thm that y ie lds the unique
interpretation of two views of 8 points in
general position fa i ls if and only if all the
visible points of the scene lie on a quadric
surface that passes through the two
viewpoints (Longuet-Higgins 1984).

In this paper i t w i l l be shown that

(d) even when the scene is a visually textured
quadric surface passing through the two
viewpoints, the two images w i l l generally
possess a unique interpretation, but

(e) if this quadric is of a special type, f i r s t
considered by haybank( 1985), then there
may be two or even three d i s t i n c t
interpretat ions, but there cannot be more
than three.

2 Formulation of the problem

The scene is supposed to consist of a set of
visual texture elements disposed on a r ig id
surface. The two camera positions are denoted
by 0 and 0'. A typical element P is situated at
vector posit ion pQ relat ive to 0, p being the
distance OP and Q being a unit vector, which may
be thought of as a point on the unit sphere
centred at 0 (Hadani, Ishai & Gur 1980, Yen &
Huang 1983). Relative to the second camera
position the vector position of P is p'Q1, where Q'
is a point on the unit sphere round 0' and p' is the
distance O'P. So if T and U"' are the translation
and rotation that carry the camera from 0 to 0',
then

(1) p'Q' = U(pQ-T).
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Equation (1) is to be regarded as a mapping
between the space of the vectors Q, associated
wi th the position 0, and the space of the Q1,
associated wi th 0'. In actual computations these
vectors are represented by cartesian coordinates
(x,y,z) or (x',y',z'), w i th squares adding up to 1.
The translation T is taken to be a unit vector - a
convent ion tha t f i xes the o the rw ise
indeterminate scale of distance - and the
rotation U is represented as a proper orthogonal
3x3 matrix (one whose reciprocal IT1 equals its
transpose U , and whose determinant equals
unity).

In the coordinate system of the second
v iewpoin t , p'Q', pUQ and UT are vectors
describing the three sides of the triangle O'PO.
It fo l lows at once that their t r ip le product
vanishes, and that

(2) [Q\ UQ, UT] = 0

- a relation known as "the epipolar constraint".
It is the val idi ty of (2) for all pairs of image
points (Q,Q'), that makes i t possible, under
favourable circumstances, to compute T and U
and the structure of the scene from the two
images alone.

There are, however, certain pairs of images that
admit of two or more interpretations, in the
sense that all the pairs (Q,Q') sat isfy two
distinct equations of type (1), namely

(3) p/Q1 = U / p ^ - T ^ a n d

(4) p2Q' = U2(p2Q-T2).

In (3) and (4) the subscripts 1 and 2 refer, of
course, to the two interpretat ions, in each
interpretation p is a function of Q and p' is a
function of Q1:

(5) p, = p/Q), p,1 = p/CQ"),

P2 = p2(Q), p2 = p2(Q').

An ambiguous pair of images therefore satisfies
the identity

(6) Q1 = U,(p,Q-T,)/p/ = U2(p2Q-T2)/p2.

The second equality in (6) implies that, for every
image point Q, U^PjQ-T,) is a linear combination

of U2Q and U2T2; and i t entitles us to infer that

(7) [U/p.Q-T,), U2Q, U2T2] = 0.

Mult iply the second term in (7) by p,, and

abbreviating the vector p,Q as R, we arrive at the

equation

(8) [U.CR-T,), U,R, U,TJ = 0.

The tr iple product on the left hand side is clearly
a second-order polynomial in (X, Y, Z), the
components of R, and so (8) is the equation of a
quadric passing through the points 0 and 0',
where R = 0 and R = T, respectively. But not
every quadric passing through 0 and 0' can be
represented in the form (8), since for given T,
and U, this form has only 5 degrees of freedom (2
for the unit vector T2 and 3 for the rotat ion
matrix U2). We deduce that although twofold

ambiguity is quite likely to arise (and usually
does - T S Huang, personal communication) if not
more than 5 texture elements can be identified in
both photographs, w i th 6 or more elements the
two images w i l l generally permit only one
interpretation even when all the elements lie on
a quadric passing through both 0 and 0'.

Equation (7) may be wr i t t en as an expl ic i t
equation for p,(Q):

(9) p,(Q) = [U,T,, U2Q, U2T2]/[U,Q, U2Q, U2T2I

Interchanging the subscripts 1 and 2 we deduce
that on the other interpretation the equation for
p(Q) is

(10) 2, U,Q, U,Q,

3 Multiple ambiguity

In his discussion of optic flow fields Maybank
established (Maybank 1985) that 3 is the
maximum number of d i s t i nc t a l te rnat ive
interpretat ions of such a f ie ld , each being
associated wi th dist inct values of the camera's
angular velocity and direction of motion. We
shall show that the same is true of a pair of
f ini tely separated proiections.

If there are two interpretations of a pair of
images, p,(Q) must satisfy (9); i f there are 3, i t

must also satisfy

(11) p,(Q) = ,, U3Q, , U3Q,

It is the necessary equivalence of (9) and (11)
that forms the basis of the following discussion.

'The numerators of (9) and (11) are f i r s t order
polynomials in the components of Q, and the
denominators are polynomials of the second
order. The most straightforward case is that in
which each numerator divides i ts denominator
algebraically, so that both (9) and (11) reduce to

(12) p,(Q) = 1/(N.Q).
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This is the equation of a plane, the vector N being
the inverse normal to the plane. The potential
ambiguity of a pair of views of a plane has been
fu l ly discussed elsewhere (Longuet-Higgins
1984b), so we shall confine ourselves from now
on to the case in which p,(Q) is not a plane, and

the numerators in (9) and (1 1) do not divide their
denominators. It fo l lows at once that the
numerators and the denominators in (9) and (11)
are direct ly proportional - that there exists a
constant c such that

(1 3) [U,Q, U2Q, U2T2] = c[U,Q, U3Q, U3T3] and

(14) [UjT,, U2Q, U2T2] = C[U,T,, U3Q, U3T3].

Though i t is by no means obvious, the insertion of
arbitrary values of U,, U2 and U3 into (13), and

subsequent comparison of the polynomial
coeff icients, determines the magnitude of c and
the directions of T2 and T3. (The signs of the

translat ion vectors cannot be determined unti l
later, when the values of the distances p(Q) and
p'(Q') are being computed; for each of the three
interpretations of the sign of T must be such as
to make all these distances positive, and i f this
is not possible the interpretation fails.) T, is

then determined (again w i th unknown sign) by
inserting the values of the other parameters into
(14).

The detailed lust i f icat ion of these assertions
wi l l be given elsewhere; here we give the results
of just one such computation, i l lus t ra t ing the
fact that the three interpretations of a t r ip ly
ambiguous pair of images may be uncomfortably
close together.

First , the Q vectors of 5 points in the f i r s t
image:

Interpretation

0.396
0.180
0.171
0.1 18
0.272

-0.
0.
0.
0.
0.

172
438
371
061
164

0.902
0.881
0.913
0.991
0.948

Next, the Q' vectors of the corresponding points
in the other image:

0.322
0.172
0.162
0.062
0.204

-0.200
0.41 1
0.342

-0.01 1
0.100

0.925
0.895
0.926
0.998
0.974

Finally, the vector T, the matr ix U and the p
values of the 5 points, in the 3 d i s t i nc t
interpretations:

-0.239

0.999
-0.015

0.036

0.541

0.019
0.996

-0.091

-0.807

-0.035
0.092
0.995

2.637 6.782 6.227 2.779 3.477

Interpretation 2

-0.846 0.435 0.310

0,
0.
0.

995
056
082

0.056
0.998
0.004

-0.083
0.001
0,997

62,751 21.478 19.194 6.095 5.405

Interpretation 3

-0.830

0.995
-0.048

0.087

0.401

0.048
0.999
0.006

0.387

-0.088
-0.002

0.996

52.076 18.157 16.592 5.813 5.066

4 Geometr ical considerat ions

In this section we brief ly review what is known
about t r ip ly ambiguous f low f ie lds, and show
that the surfaces from which they arise are of
the same type as those that give rise to t r ip ly
ambiguous image pairs. We conclude that the
number of dist inct interpretations of two views
of a textured surface cannot exceed 3.

In his 1985 paper Maybank showed that
ambiguous flow fields can only arise from planes
or quadric surfaces of a special form, namely

(15) M: [V, v, R] = (W'.RKV.R) - (W'.V)R2,

where (v, 0) and (v1, 0') are alternative values of
the camera's linear and angular velocity,

(16) W = 0' - 0 and

(17) R = pQ = (X, Y, Z).

The quadric l i has several interesting properties:
(a) i t passes through the viewpoint R = 0; (b) i ts
tangent at the viewpoint is the common plane of
v and v1 (since when R is small the tr iple product
[v', v, R] is very small); (c) i t contains the line
R = xv1 (such a value of R causing both sides of
(15) to vanish); and (d) i ts quadratic part has a
specially simple diagonal form. If the X and Z
axes are taken as the internal and external
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bisectors of the angle 2& between W and v', the
right hand side of (1 5) becomes

(18) K[s2X2 • (s2-c2)Y2 - c2Z2]

where k is the product of the lengths of W and v',
c = cose- and s = sine-. Since the line R = xV lies
entirely in M, M must be a ruled quadric, the most
general such surface being a hyperboloid of one
sheet. A hyperbolic paraboloid is also a
possib i l i ty ( i f c 2 = s 2 ) , but in either case the
middle coefficient in (18) is the sum of the other
two.

We shall refer to the directions of W and V as
the principal direct ions of the quadric M. A
tr ip ly ambiguous f low f ield arises if in addition
to (v, 0) and (v1, 0') there exists a third pair of
veloci t ies (v", 0") such that W" (= 0 " -0 ) is
parallel to v1 and W" is parallel to v". Then the
principal d i rect ions of M can, as i t were,
exchange roles, the one that was parallel to W
now being regarded as parallel to v", and the one
that was parallel to v' being seen as parallel to
W". It is, essentially, this duality that l imi ts the
number of interpretat ions, given the "correct"
interpretation (v,0) of two views of M, the two
other in terpreta t ions, (V, O1) and (v", 0"),
exhaust the possible ways of associating a linear
velocity and an angular velocity difference w i th
the principal directions of M.

At f i r s t sight equation (8), describing the type of
surface that gives r ise to ambiguous pairs of
views, looks rather different from equation (18),
for the optic flow case. But as we shall see in a
moment, there- is a close relation between the
surfaces they represent.

We begin by wr i t ing (8) in the form

(19) L: [U(R-T,),R,T] = 0,

where U = (U2)"'U, and T= T2.

Like Maybank's quadric M, the surface L is a ruled
quadric containing the viewpoints R = 0 and R =T,

and the straight line R = xT We now show that
the second-order terms of L are identical in form
with those of l i .

Writing R = (X, Y, Z), and using lower-case letters
to denote the 3 components of T and the 9
components of U, we begin by expanding the
second-order part of (19) in the form

the elements of U. A convenient one for the
present purpose is in terms of 3+1 real numbers
p, q, r and s whose squares add up to 1;

(20) [UR, R, T] = X 2 (u 3 ] t 2 -u 2 1 t 3 ) <

• YZ(u 2 2 t ] -u ] 2 t 2 +u 1 3 t 3 -u 3 3 t 1 )

Y2(....) + Z2(....)

+ ZX(....) + XY(....)

where the dots indicate that the subscripts 1, 2
and 3 have been cyclical ly permuted. In order to
proceed we need a parametric representation of

(21)
=p2-q2-r2+s2, J]2=2(pq - rs), u ]3=2(rp + qs),

u2,=2(pq + rs), u22=-p2+q2-r2+s2, u23=2(qr-ps),

u3]=2(rp -qs), u32=2(qr+ps), u33=-p2-q2+r2+s2.

(In point of fact s = cos(v>/2), where u> is the
rotation angle of U and (p, q, r) are the direction
cosines of the rotat ion axis, mul t ip l ied by
sin(v/2) . ) Substituting from (21) we obtain the
coefficient of X2 in (17) as

(22) 2 ( p r - qs)t2 - 2(pq + rs) t3

and that of YZ as

(23) 2(q2 - r2 ) t , - 2(pq - rs) t2 + 2(pr - qs)t3,

w i t h analogous expressions for the other
coefficients.

Defining three new vectors

(24) u = (p, q, r), v = u x T, w = sT - v,

we obtain, after some algebra,

(25) [UR, R, T] = 2[(u.R)(w.R) - (u.w)R2].

The right hand side of (25) is identical in form
wi th that of (15), showing that L as defined by
(19) is indeed a Maybank quadric.

To recapitulate, we showed in section 2 that in
order to present an ambiguous pair of views from
camera posi t ions re lated by the re la t i ve
orientation (T^U,), a surface must be of the form

(8) or equivalently (19). The second-order terms
in i ts equation are of the same form as those of
the Maybank quadric (15) , the pr inc ipa l
directions - those of u and w - are functions of
U, and of the translation T2 and the rotation U2

associated wi th the alternative interpretation.

In the t r ip ly ambiguous case the same functions
of U, T3 and U3 must also yield the principal

direct ions of the same quadric; this is only
.possible if u' is parallel to w and w' is parallel
to u, and leaves no room for any further dist inct
interpretation. Three is therefore the maximum
number of dist inct interpretations of two views
of a visually textured surface.

5 Discussion

What we have shown is that the existence of two
alternative interpretations of a pair of views of
a visual ly textured surface implies that the
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surface is either a plane or a quadric of the form
(8). Given any "true" relative orientation (T,, U,)
and any "spurious" one (T2, U2), one can construct

a quadric of type (8) such that i ts two images
w i l l sus ta in e i ther of the associated
interpretat ions. This quadric passes through
both viewpoints and contains the line R = xT2, i t

is, in fact, a surface of the type f i r s t considered
by Maybank in connection wi th the interpretation
of optic f low fields. The spurious interpretation
w i l l not necessari ly sa t is fy the v i s i b i l i t y
conditions - that p(Q) and p'(Q') are both positive
for all the image points. But the more nearly
equal are the two relat ive or ientat ions, the
greater the l ikel ihood that the a l ternat ive
interpretation w i l l survive the v is ib i l i ty test.

Three is the maximum number of d is t inc t
interpretations of a pair of views of a surface
patch. Tr ip ly ambiguous view pairs may be
constructed by assigning arbitrary values to the
three associated ro ta t i on ma t r i ces ; the
corresponding t rans la t ion vectors are then
uniquely determined, as wel l as the three
alternative surfaces on which the visible points
may be deemed to lie.

Apart from their purely mathematical interest,
these resul ts have both a reassuring and a
disturbing aspect for the designers of computer
vis ion systems. Reassuring, in that they
demonstrate the existence of an upper l im i t to
the number of interpretations that two images
w i l l sustain i f a suf f ic ient number of visible
texture elements (5 or more, in general.) appears
in both images; disturbing, in that they remind us
of the untrustworthiness of vision algorithms
based on the impl ic i t assumption that there must
be a single "best" interpretation of any given set
of visual data.

Perhaps the most useful fact to emerge from the
present analysis is that the most hazardous
scenes for computational analysis are those in
which all the visible texture elements lie in one
smooth surface. The simplest scenes are often
the most perceptually confusing!
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