
Alvey MMI-007 Vehicle Exemplar:

Object Hypothesis by Evidential Reasoning
S. K. Morton

Information Technology Research Centre,
University of Bristol, BS8 1TR.

ABSTRACT

Firstly the need for an approach to the design
of an integrated vision system incorporating both
bottom-up and top-down techniques is explained.
Secondly two theories that may be applied in such a
system, namely fuzzy conceptual schemas and support
logic, are expounded. Thirdly a program utilising
such tools and envisaged as a prototype generalised
vision system is described. Fourthly results
obtained for a restricted domain of images are
commented upon.

INTRODUCTION

Previous work on artificial vision can be
roughly divided into three camps, which may be
characterised by the terms "neuronal", "psycho-
physical", and "knowledge-based".

The neuronal approach is epitomised by the work
of Aleksander (Aleksander & Stonham 1979) and by the
more recent efforts of the connectionist school (e.g.
Hinton & Anderson 1981), where a network of
artificial pseudo-neurons - random-access-memories in
Aleksander's work, processors in the connectionists'
work - "learns" representations of objects as states
of the network. Impressive results have been
obtained, and an especially interesting feature in
such an approach is the ability to recognise an
object with a minor flaw as the object previously
learnt but with a diminished confidence, a
characteristic of natural vision.

The psychophysical approach is based on the
philosophy of Artificial Intelligence (AI) propounded
by Marr (1977, 1982).. Here the emphasis is on the
establishment of "hard" theories in the physics of
visual processes which can be built upon by subsequent
research. Examples are the difference-of-Gaussians
edge-detection process and the 2.5D sketch technique
devised by Marr (1982). The procedures involved are
of the deterministic mathematical paradigm, and there
is no attempt to incorporate representations of the
higher-level processes of human vision, particularly
symbolic inference.

The approach of knowledge-based methods however
is founded principally on the notion that human
vision consists of the verification of hypotheses
arising from the expectations embodied in background
knowledge of possible situations in the world. Thus
symbolic reasoning is viewed as the guide for the
invocation of lower-level processes, and a greater
experience of visual contexts implies a greater
visual ability.

It seems clear that none of the above on their
own will provide a satisfactory solution to the
vision problem. The neuronal and psychophysical
approaches appear to be effective for the recognition
of isolated objects from restricted domains, but not
so for general scene interpretation where a number of
objects may be juxtaposed with background areas

undefinable in terms of shape properties. On the
other hand the knowledge-based approach addresses the
principle that context has an important role to play
but it is apparent that something more is needed.

The approach taken in this paper is that the
interpretation of a scene may only be performed by
the bringing of various sorts of knowledge to bear on
the raw data using a combination of data-driven and
knowledge-driven techniques. Central to this is the
need to combine the evidences arising from different
sources, which, due to the imperfections of the
segmented data, may be partial evidences. Therefore
some well-founded calculus must be employed to take
account of such uncertainty in the conflation of
various supportive and counter-supportive evidences.
By this approach the complex interactions of human
vision may begin to be modelled. Until the fuller
development of parallel processing methodologies and
the results of connectionist models become more well
established, it is only possible to develop large
programs for vision using serial languages; however,
important results emerge which may be relevant to
implementations on more suitable hardware.

Thus the purpose of this paper is to emphasise
the need for a greater interaction between the
various approaches in artificial vision, and in a
later section a program embodying a prototype of the
sort of system architecture required is presented.
Firstly however two theoretical tools utilised in
this program are described.

I FUZZY CONCEPTUAL SCHEMAS

A knowledge representation formalism expounded
by Sowa (1984) is the theory of conceptual graphs.
A conceptual graph consists of concepts linked via
conceptual relations: concepts correspond to entities
in the world while conceptual relations express the
semantic relations holding between these entities.
Conceptual graphs play a part in the vision program
described below in two ways: as perceptual graphs,
symbolic representations of the scene's interpretation
and as schemas, incorporating background knowledge.
Perceptual graphs are described in a later section.

A schema is a kind of conceptual graph embodying
knowledge in the form of expectations and associations
for a particular concept, the subject of the schema.
It is a declarative knowledge structure and may be
used in non-deductive reasoning. In the context of
vision the concepts and conceptual relations refer to
specifically visual concepts and relations: thus no
event concepts and no verb-noun case relations are
included, the assumption being that this type of
knowledge is only very indirectly conveyed by visual
processes. The types of the concepts thus refer to
expressible physical entities and directly perceptible
attributes, while the relations refer to entity-
attribute relationships and perceptible two-dimension-
al semantic constraints and expectations holding
between entities.

15 AVC 1987 doi:10.5244/C.1.3

A fuzzy conceptual schema is a schema for which
conditional support pairs (see next section) are
associated with conjunctions of the relations of the
schema expressing their contributory evidential
supports for and against the subject. In Figure 1
an example of a visual fuzzy conceptual schema for
the concept [building] is shown. It consists of
three conceptual links representing the relation-
ships "a roof is a part of a building", "a walling is
a part of a building", "a roof is above a walling".
These conceptual relations pertain to the image
domain rather than to the object domain, i.e. the
area of the image corresponding to "building"
subsumes the area of the image corresponding to
"roof", etc. These relationships constitute the
expected associations for an image of a building.
The relative importances of conjunctions of these
conceptual links is given by their attached support
pairs; for more explanation of this type of
knowledge structure see Morton & Popham (1987).

schema(building,*x4) <~
[building:*x4J -

(*rl,part) —> [roof] -
(*r3,above) <— [walling:*x6];

(*r2,part) —> [walling:*x6];
{ { } [] []

trees(X):-

[,] , [,] ,
{*,*}:[l , l] ,{*rl ,*r2,*r3}:

Figure 1

N.B. The notation {*,*}: [x,yj means that
all conjunctions with two members
have the support pair [x,y].

green(Y),
has_hue(Y,X) :[0.6,l]

value(Y@$low_val),
has_val(Y@$low_val,X) :[o.6,l

sky(Y),
adj(Y.X) : [o.3,l]

green(Y),
has_hue(Y,X),
sky(Z),
adj(Z,X) : [o.75,l]

green(Y),
has_hue(Y,X),
value(Z@$low_val),
has_val(Z(?$low_val,X) :[o.9,l

value(Y@$low_val),
has_val(Y@$low_val,X),
sky(Z),
adj(Z.X) :[o.85,l]

green(Y),
has_hue(Y,X),
value(Z@$low val),
has_val(Z@$low_val,X),
sky(W),
adj(W,X) :[l,l].

Figure 2

II SUPPORT LOGIC

The calculus that has been used in the develop-
ment of the vision program herein described is that
of support logic (Baldwin 1985) which has been
developed at Bristol University and implemented as
SLOP (Monk S Baldwin 1987). Support logic is a
PROLOG-like programming language which incorporates
uncertainty. A support logic program consists of
facts, rules and bundles. A fact is of the form of
a PROLOG fact with an associated support pair [a,8],
a,3 E [O , I] , where a denotes the degree of necessary
support for the fact, and 1-6 the degree of necessary
support for the negation of the fact. A rule is of
the form of a PROLOG rule with an associated
conditional support pair [a,6], a,6 E [O , 1] , where a
denotes the degree of necessary support for the head
of the rule given the body, and 1-6 the degree of
necessary support for the negation of the head given
the body. A bundle is a compound rule with one head
and a number of bodies with their own conditional
support pairs used to represent mutually dependent
rules. Figure 2 shows a bundle for the predicate
trees.

The calculus is founded on ideas from fuzzy
logic and Dempster's evidence theory and has been
devised to combine and propagate values for supports
through a chain of inference involving support logic
facts, rules and bundles (Baldwin 1986). This
calculus has been detailed elsewhere (Baldwin & Monk
1987),(Monk S Baldwin 1987), (Morton & Popham 1987).

It is worth describing an example of how the
SLOP system interfaces with the data. In a typical
stage of the program it may be necessary to evaluate
the "greenness" of a set of contiguous regions from
the segmentation, say [l,2,3]. Then we invoke the
rules below:-

area_has_hue(Hue,A,Size) :-
callTmember(X,A)),
has_hue_proc(Hue,X),
relatively_big_region(X,Size) : [l,l].

area_has_hue(Hue,A,Size) :-
call(member(X,A)),
sup_not has_hue_proc(Hue,X),
relatively big region(X,Size) :[0,0].

has_hue_proc(green,X) :-
~calT(colour(X,Hue,Sat)),
call(deg_to_rad(Hue,HueRad)),
call(colour_compatible(HueRad,Sat,1.0472,3.14159,

N,P)) :[N,P].

relatively_big_region(X,Size) :-
call(geometry(X, , ,XSize, , , ,)) ,
call(N is sqrt(XS~ize/Size)T 7[N",N] .

To explain these predicates the reasoning to
answer the SLOP query is described.

area_has_hue(green,[l,2,3j,150). ,

This asks for the support that the set of regions
or area 11,2,31 has the hue green, when the aggregate
size of the regions is 150 (pixels). Resolving this
with the first area_has_hue clause gives us the
positive support provided by relatively_big_regions
(compared to 150) which are green; resolving with the
second clause gives us the negative support provided
by the relatively_big_regions which are sup_not (not)
green. Obviously support pairs are returned from
the relatively big region and has hue proc clauses,
and these are combined according to the support logic
calculus. The above query can be satisfied by each

16

region number twice, once positively, once negatively
so that we would have six contributing support pairs;
these would be combined according to the renormal-
isation rule of the calculus. The trace of the
above query is shown in Appendix I.

The has_hue_proc clause and the relatively_big_
region clause call the colour predicate and the
geometry predicate for the relevant region
respectively. These embody part of the actual data
evaluated during the segmentation process. (N.B.
Ordinary PROLOG clauses are called from SLOP using
the "call" predicate.)

In Appendix II there is a trace of the
evaluation of the trees bundle shown in Figure 2.
The bundle has seven rules comprising conjunctions
of the conceptual links in the corresponding schema
together with their associated conditional support
pair. These are evaluated one at a time and the
resulting support pairs are treated as intervals so
that their intersection becomes the overall support
for trees ([4,5,6]).

Ill THE VISION PROGRAM: GLAICIER

GLAICIER is an acronym for
Images using Contextual Informat
Reasoning. It is intended to b
general scene analyser where the
of knowledge-based methods and 1
and techniques. Interaction oc
directions: low-level evaluators
stimuli to high-level knowledge
resulting hypotheses are verified
of other evaluators to the image
of mutual interaction occurs bet
of representation, and is an att
theories of such interaction in
system.

General Analysis of
ion and Evidential
e a prototype
re is an integration
ower-level processes
curs in both
provide clues or
structures; and the
by the application
data. This sort

ween different levels
empt to model
the human vision

The working of the program is much as described
in Morton & Popham(1987), so there is little point
in going through all the implementation details
again. Instead a different approach is taken: the
various different levels of representation and their
mutual interactions are considered.

At the moment the lowest level the program
deals with is the segmentation level; this means
that it has no interaction with the pixel level
itself, and so we are unable to revise the
segmentation if it seems necessary. These data
come from MCCS in an array format, and is converted
into a PROLOG representation using a specifically
written C program.

The second level is what is termed the plan, a
chunking together of regions using topological data
and colour information to resolve conflicts. This
is represented as a number of PROLOG clauses
containing the dominant region and subsidiary
regions for each plan area.

The third level is what is termed the
plan_image where each plan area has been assigned an
ordered list of possible labels based on the
evaluation of certain clues (see below) and of a
number of properties drawn from the schemas.

The next level is that of perceptions which are
the result of the application of the schemas and
evaluation of all the accumulated evidence using the
support logic calculus. They are in fact
instantiations of the concepts in the schemas with
support pairs associated with the label assignations
to regions or groups of regions.

The final level is the perceptual graph which
is the symbolic description of the image in the
format of a conceptual graph derived by joining
together the perceptions representing physobj

(physical object) types. In other words attribute
concepts that have been established are ignored for
the sake of clarity.

The first interaction consists of the application
of low-level clue processes to the regions which, if
resulting in a positive outcome, leads to applying
the schema corresponding to the clue to the sub-
sumptive plan area. For example, there are several
profile features which strongly indicate the
presence of a car; if these are incorporated as
clues, then a positive outcome to their application
to a region causes the schema for road to be
subsequently applied to that region's plan area as a
priority.

The second interaction consists of the
application of a schema to the plan image. This
causes the invocation of low-level region feature
and relation evaluators and their application to the
segmentation data for a group of contiguous regions
in the image. The subject of the schema may be a
decomposable concept; that is, it subsumes other
concepts, in which case other schemas are invoked.
For certain highly structured concepts a schema is
not appropriate; rather a model—matching process
using a model of the object in question is applied
to an area of the image suggested by the schema.
The model-matching process itself is a low-level 6-D
template-matching procedure which has been implement-
ed at Reading University. (Since they have the
original images, they are able to apply it directly
to the pixel data.) This is an expensive process,
so that the advantage of the integration of the top-
down approach with geometrical model-matching tech-
nique is apparent in terms of efficiency.

Investigations are currently under way to devise
some way of assessing the plan, the structure of
which is crucial, and thus reconstructing it if
necessary. This assessment can be done when we
have "bad" shapes, "bad" labels or "bad" aggregations
of regions, which can be rectified by reassignment of
subsidiary regions, merging of regions or by using a
greater resolution in problematic localities in the
image.

IV RESULTS

Figures 3 to 7 show the successive represent-
ations of an image when GLAICIER is applied to it.
Thus the digitised image in Figure 3 is ultimately
interpreted as the perceptual graph in Figure 7.
This particular image is a member of the Alvey image
set. It was chosen since it is a typical example
of the type of scene to which GLAICIER is designed
to be applicable and moreover includes an
unambiguous car.

In Figure 4 is the MCCS segmentation of the
image with the boundaries of the plan areas shown in
bold. 'I' identifies the image; 'R' identifies
which of the five segmentations corresponding to
different resolutions is used (in this case the
lowest resolution); and 'P' is the parameter used in
the formation of the plan. Obviously the
resolution and parameter have been chosen to give a
"good" plan; as previously mentioned it is desirable
to incorporate some means by which assessment and
selection of the plans can be performed auto-
matically.

In Figure 5 are the plan image areas which
result from the application of certain attribute
evaluators to the plan areas. For the types
building and field no simple attributes are
pertinent, so no information is gained about these
labels at this stage; hence the fo,l] support
pairs. The other support pairs are not recorded;
they are merely used to give an ordering to the
schemas to be applied to each plan image area.

17

In Figure 6 is the list of percepts which
result from the application of the schemas. The
structure of the image, as expressed by the plan, is
represented by a number of part relationships.
Furthermore the structure of a plan area deemed to
correspond to a decomposable concept is likewise
represented. Regions and groups of regions are
given entity labels. A trace of the process of
evaluation is shown in Appendix III; note that
interrogation of the operator is used to elucidate
the supports for and against a car being in a certain
area, since the model-matching process is not fully
integrated.

In Figure 7 is the resulting fuzzy perceptual
graph as the symbolic representation of the image.
The syntax is the same as Sowa's for ordinary
conceptual graphs, except that within each concept
there is a support pair incorporated delimited by a
colon. Perceptual relations are not ascribed
support pairs.

V CONCLUSIONS

Clearly the resulting perceptual graph of the
last section is only a rough representation of the
image and in the case of regions 25 and 24
completely inaccurate. The reason for this is
that since the interpretation relies exclusively on
the data resulting from the MCCS segmentation, any
assessment of region properties and relationships in
the evaluation of schemas will only be as
semantically valid as the data. For example
regions corresponding to areas of the image which
are obviously green may not necessarily be assigned
the "correct" colour values. Thus these regions'
assessment as trees or grass will be adversely
affected. Accuracy of colour identification is
well-known as problematic; some sort of
normalisation of the values may be helpful.

Improvement in the system performance may be
obtained if other information about the image is
used, in particular edge-maps. Curves, straight
lines, closed loops and contiguous groups thereof
may provide important clues to certain types of
object, particularly artefacts.

Thus a source of evidence independent of the
segmentation data could be used in tandem with that
data. Another way in which extra information can
be used is if the five MCCS resolutions are
arranged in an hierarchical format. This would
enable the analysis to be performed with greatest
detail at difficult areas of the image while using
the lowest resolution for homogeneous
"uninteresting" areas such as sky.

Due to the system1s total dependence on the
segmentation data, its results are not always
accurate. Experimentation is proceeding with
other images in the Alvey set and adaptations and
extensions to the programs are continually carried
out in order to improve performance and increase
generality* It is not worth pretending that there
is not a long way to go before we have a general
scene analysis program; but at least we have
started.

REFERENCES

1 Aleksander, I., & Stonham, T.J., "Guide to
pattern recognition using random-access
memories", I.E.E. Journal on Computers and
Digital Techniques, II.1, (1979), 29-40.

2 Hinton, G.E., & Anderson, J.A., Parallel Models
of Associative Memory, Lawrence Erlbaum
Associates, New York, New York, U.S.A., 1981.

3 Marr, D., "Artificial Intelligence - a personal
view", Artificial Intelligence, IX.1, (1977),
37-48.

4 Marr, D., Vision, W.H. Freeman, San Francisco,
California, U.S.A., 1982.

5 Sowa, J.F., Conceptual Structures, Addison-
Wesley, 1984.

6 Morton, S.K., & Popham, S.J., "An algorithm
design specification for interpreting segmented
image data using schemas and support logic",
Information Technology Research Centre Report No.
ITRC 85, University of Bristol, Bristol, U.K.
(Alvey Ref.No. AOI/PR/BU/860922; to be published
in Image and Vision Computing, August 1987).

7 Baldwin, J.F., "Support Logic Programming",
Proc. NATO Advanced Study Institute on Fuzzy
Sets, 8th-2Oth July 1985.

8 Monk, M.R.M., & Baldwin, J.F., "Slop User's
Manual Version 1.2", Information Technology
Research Centre Report No. 106, University of
Bristol, Bristol, U.K., 1987.

9 Baldwin, J.F., "Evidential Support Logic Prog-
ramming", Information Technology Research Centre
Report No. 80, University of Bristol, Bristol,
U.K., 1986.

10 Baldwin, J.F., & Monk, M.R.M., "Evidence Theory
Fuzzy Logic and Logic Programming", Information
Technology Research Centre Report No. 109,
University of Bristol, Bristol, U.K., 1987.

Figure 4

plan_area(l,2, [ll,13]).
plan_area(l,3,[4,6,7,8,9,10,14,15,16,17]).
plan_area(l,5, [1,12]).
plan_area(l,18,[19,20,21,22,23]).
plan area(l,25,[24]).

18

p l a n _ i m a g e _ a r e a (1 , 2 , (1 1 , 1 3] ,
[(s k y : [0 . 8 1 1 7 9 3 , 0 . 9 0 2 0 1 5]) ,

(r o a d : [0 . 0 8 1 9 5 6 7 , 0 . 2 6 3 0 7 8]) ,
(b u i l d i n g : [0 , l]) ,
(t r e e s : [0 . 1 0 4 0 0 3 , 0 . 8 5 7 5 0 2]) ,

p l a n _ i m a g e _ a r e a (1 , 3 , [4 , 6 , 7 , 8 , 9 , 1 0 , 1 4 , 1 5 , 1 6 , 1 7] ,
((s k y : [0 . 2 7 6 0 7 5 , 0 . 3 6 4 7 7 4]) ,

(r o a d : [0 , 0 . 0 2 9 7 9 3 6]) ,
(b u i l d i n g : [0 , 1]) ,
(t r e e s : [0 . 8 4 2 5 5 2 , 0 . 9 0 8 5 2 5]) ,
(i l d : [0 , l]) J) .

plan image_area(1,5,[1,12],
[(s k y : [0 . 0 0 2 4 0 7 7 , 0 . 0 1 6 5 5 1 4]) ,

(r o a d : [0 0 0 1 2 1 1 5 6])
[(sky:[0.0024077,0.016
(road:[0,0.0121156]),
(building:[0,1]),
(trees:[0.98001,0.995545]),
(field:[0l])])

plan_image area(1,18,[19,20,21,22 ,23],
[(sky:[0,0.0512509]),
(road:[0.915675,0.981105]),
(building:[O,l]),
(trees:[0.709622,0.826977]),

plan image area(1,25,[24],
[(sky:[0,0.0258656]),
(road:[0.114809,0.296122]),
(building:[0,l]>,
(trees:[0.958712,0.991509]),

Figure 5

percept(image(ruO2),[1,1]) .
percept(part([2,11,13],ruO2),[1,1]).
percept(part([3,4,6,7,8,9,10,14,15,16,17],ruO2) ,[1,1]).
percept(part([5,1,12],ruO2),[1,1]) .
percept(part([18,19,20,21,22,23],ruO2),[1,1]).
percept(part([25,24],ruO2),[1,1]).
percept(part([2],[2,ll,13]),[l,l]).
percept(part([ll],[2,ll,13]),[l,l]).
percept(part([13],[2,11,13]),[1,1]).
percept(cloud([2]),[0.532657,1]).
percept(cloud([11]),[0.538266,1]).
percept(cloud([13]),[0.557345,1]) .
percept(sky([2,11,13]),[0.90448,1]).
percept(adj([3,4,6,7,8,9,10,14,15,16,17],[2,11,13.]), [1,1])
percept(trees([3,4,6,7,8,9,10,14,15,16,17]),[6.800675,1]).
percept(adj([5,1,12],[2,11,13]),[1,1]).
percept(trees([5,1,12]),[0.8352,1]).
percept(part([18],[18,19,20,21,22,23]),[1,1]).
percept(part([22,20,21],[18,19,20,21,22,23]), [1,1]).
percept(part([23],[18,19,20,21,22,23]),[l,l]).
percept(part([19],[18,19,20,21,22,23]),[1,1]).
percept(tarmac([18]),[0.4,1]).
percept(tarmac([23]),[0.509547,1]) .
percept(adj([25,24],[2,ll,13]),[0,0]).
p e r c e p t (t r e e s ([2 5 , 2 4]) , [0 . 8 3 0 0 7 2 , 1]) .
p e r c e p t (c a r ([2 2 , 2 0 , 2 1]) , [1 , 1]) .
p e r c e p t (c a r ([1 9]) , [0 . 9 , 0 . 9]) .
p e r c e p t (r o a d ([1 8 , 1 9 , 2 0 , 2 1 , 2 2 , 2 3]) , [0 . 9 9 5 0 7 9 , 1]) .

Figure 6

19

[image:ruO2:[1,1]] -
(part) --> [sky: [2,11,13] : [0.90448,1]] -

(part) --> [cloud:[2]:[0.532657,1]]
(part) --> [cloud:[11]:[0.538266,1])
(part) --> [cloud:[13]:[0.557345,1]]
(adj) --> [trees:[3,4,6,7,8,9,10,14,15,16,17]:[0.800675,1]]

(adj) — > [trees:[5,l,12]:[0.8352,1]]
(adj) — > [trees:[25,24]:[0.830072,1]];

(part) --> [trees:[3,4,6,7,8,9,10,14,15,16,17]:[0.800675,1]]
(part) --> [trees: [5,1,12] : [0.8352,1]]
(part) --> [road:[18,19,20,21,22,23]:[0.995079,1]] -

(part) --> [tarmac:[18]:[0.4,1]]
(part) — > [car:[22,20,21]:[1,1]]
(part) — > [tarmac:[23]:[0.509547,1]]
(part) — > [car:[19]:[0.9,0.9]];

(part) — > [trees:[25,24]:[0.830072,1]];

Figure 7

Appendix 1

| ?- slop.

Support Logic Programming - Version 1.1
J.F.Baldwin and M.R.M.Monk
I.T.R.C., Dept. of Engineering Mathematics,
University of Bristol, England.
January 1986

query? trace,area_has_hue(green,[1,2,3],150).

area has_hue(green,[1,2,3],150):-
call(member(_161,[l,2,3])),
has_hue_proc(green,_161),
relatively_big_region(_161,150) : [1,1].

OVERALL SUPPORT -> member(1,[1,2,3]) :[1,U

-> has_hue_proc(green,1) :[0.7,0.8]
OVERALL SUPPORT -> has_hue_proc(green,1) :[0.7,0.8]

-> relatively_big_region(l,150) :[0.1,0.1]
OVERALL SUPPORT -> relatively_big_region(1,150) :[0.1,0.1]

-> call(member(l,[l,2,3])),
has_hue_proc(green,1),
relatively_big regiont1,150) :[0.0699999,0.07999991

-> area_has_hue(green,[l,2,3],150) :[0.0699999,11
OVERALL SUPPORT -> member(2,[1,2,3]) :[1,1]

-> has hue_proc(green,2) :[0.9,0.95]
OVERALL SUPPORT -> has_hue_proc(green,2) :[0.9,0.95]

-> relatively_big_region(2,150) :[0.8,0.8]
OVERALL SUPPORT -> relatively_big_region(2,150) :[0.8,0.8]

-> call(member(2,[1,2,3])),
has_hue_proc(green,2),
relatively_big_region(2,150) :[0.719999,0.759999]

-> area_has_hue(green,[1,2,3],150) :[0.719999,1]
OVERALL SUPPORT -> member(3,[1,2,3]) :[1,1]

-> has_hue_proc(green,3) : [0.05,0.2]
OVERALL SUPPORT -> has_hue_procI[green,3) :[0.05,0.21

-> relatively_big_region(3,150) :[0.9,0.91
OVERALL SUPPORT -> relatively_big_region(3,150) : [0.9,0.9]

-> call(member(3,[l,2,3D),
has hue proc(green,3),
relatively_big_region(3,150) :[0.045,0.18)

-> area_has_hue(green,[1,2,3],150) :[0.045,1]

20

Call to Prolog Goal - call(member(_161,[1,2,3])) FAILED
area_has_hue(green,[1,2,3],150):-

call(member(_161,[l,2,3])),
s u p _ n o t h a s h u e _ p r o c (g r e e n , 1 6 1) ,

r e l a t i v e l y _ E i g _ r e g i o n (_ 1 6 1 , T 5 0) : [0 , 0] .

OVERALL SUPPORT - > m e m b e r (1 , [1 , 2 , 3]) : [1 , 1]

- > h a s _ h u e _ p r o c (g r e e n , 1) : [0 . 7 , 0 . 8]
OVERALL SUPPORT -> h a s _ h u e _ p r o c (g r e e n , 1) : [0 . 7 , 0 . 8]
-> s u p _ n o t h a s h u e _ p r o c (g r e e n , 1) : [0 . 2 , 0 . 3]
- > r e l a t i v e l y _ E i g _ r e g i o n (l , 1 5 0) : [0 . 1 , 0 . 1]
OVERALL SUPPORT - > r e l a t i v e l y _ b i g _ r e g i o n (1 , 1 5 0) : [0 . 1 , 0 . 1)

- > c a l K m e m b e r d , [1 , 2 , 3])) ,
s u p _ n o t h a s _ h u e p r o c (g r e e n , 1) ,
r e l a t i v e l y _ b i g _ r e g i o n (l , 1 5 0) : [0 . 0 2 , 0 . 0 3)

- > a r e a _ h a s _ h u e (g r e e n , [l , 2 , 3] , 1 5 0) : [0 , 0 . 9 8]
OVERALL SUPPORT - > m e m b e r (2 , [1 , 2 , 3]) : [1 , 1]

-> has hue proc(green,2) :[0.9,0.95]
OVERALL SUPPORT -> has_hue_proc(green,2) :[0.9,0.95)

-> s u p _ n o t h a s _ h u e _ p r o c (g r e e n , 2) : [0 . 0 5 0 0 0 0 2 , 0 . 1]
-> r e l a t i v e l y _ b i g _ r e g i o n (2 , 1 5 0) : [0 . 8 , 0 . 8]
OVERALL SUPPORT -> r e l a t i v e l y _ b i g _ r e g i o n (2 , 1 5 0) : [0 . 8 , 0 . 8]

-> call(member(2,[1,2,3])),
sup_not has_hue proc(green,2) ,
relatively_big_region(2,150) :[0.0400001,0.0800002]

-> area_has_hue(green,[1,2,3],150) : [0,0.96]
OVERALL SUPPORT -> member(3,[1,2,3]) :[1,1]

-> has_hue_proc(green,3) :[0.05,0.2]
OVERALL SUPPORT -> has_hue_proc(green,3) :[0.05,0.2]

-> sup_not has_hue_proc(green,3) : [0.8,0.95]
-> relatively_big_region(3,150) : [0.9,0.9]
OVERALL SUPPORT -> relatively_big_region(3,150) :[0.9,0.9]

-> call(member(3,[1,2,3])),
sup not has hue proc(green,3),
relatively_Eig_region(3,150) : [0.719999,0.854999]

-> area has hue(green,[1,2,3] ,150) : [0,0.280001]
Call to Prolog Goal - call(member(161, [1,2,3])) FAILED
OVERALL SUPPORT -> area_has_hue(green,[1,2,3], 150) :[0.443162,0.589846]

area_has_hue(green,[l,2,3],150) :[0.443162,0.589846]

Appendix 2

| ?- slop.

Support Logic Programming - Version 1.1
J.F.Baldwin and M.R.M.Monk
I.T.R.C., Dept. of Engineering Mathematics,
University of Bristol, England.
January 1986

query? trace,trees([4,5,6]) .

21

trees![4,5,6]) i-

green(_152),
has hue(_152,[4,5,6]) :[0.6,l]

<-
value(_153g$low_val),
h a s _ v a l (_ 1 5 3 § $ l o w _ v a l , [4 , 5 , 6]) : [0 . 6 , 1]

<-
s k y (_ 1 5 4) ,
a d j (_ 1 5 4 , [4 , 5 , 6]) : [0 . 3 , l]

<-
g r e e n (_ 1 5 5) ,
h a s _ h u e (_ 1 5 5 , [4 , 5 , 6]) ,
sky(1 5 6) ,
a d j (_ 1 5 6 , [4 , 5 , 6]) : [0 . 7 5 , l]

<-
g r e e n (_ 1 5 7) ,
h a s _ h u e (_ 1 5 7 , [4 , 5 , 6]) ,
va lue(_158@$low_val) ,
has val(158@$low val,[4,5,6]) :[0.9,l]

value(_159@$low_val),
has val(159g$low_val,[4,5,6]),
skyT_1607,
adj(_160,[4,5,6]) :[0.85,l]

<-
green(_161),
has_hue(_161,[4,5,6]),
value(_162@$low_val),
has val(_162@$low_val,[4,5,6]),
skyT_163),
adj(_163,[4,5,6]) :[1,1].

green(_152),
has_hue(_152,[4,5,6]) :[0.6,l] :[0.3,l]

value(153@$low val),
has_vaT(_153@$low_val,[4,5,6]) :[0.6,1] :[0.539999,1]

sky(_154),
adj(_154,[4,5,6]

greenf 155),
has hue(_155,[4,5,6]),
skyT_156),
adj(_156,[4,5,6]) :[O.

green(_157),
has_hue(_157,[4,5,6]),
value(158@$low_val),
has_vaT(_158€$low_val,[4,5,6]) :[0.9,l] :[0.404999,1]

value(_159@$low_val),
has val(159§$low_val,[4,5,6]),
skyT_1607,
adj(_160,[4,5,6]) :[0.85,l] :[0,

green(_161),
has hue(161,[4,5,6]),
value(_16'2@$low_val),
has_val(_162§$low_val,[4,5,61),
sky(_163),
adj(163,[4,5,6]) :[1,1] :[0,l]

-> trees)[4,5,6T) :[0.539999,1]
OVERALL SUPPORT -> trees([4,5,6]) :[0.539999,1]

trees([4,5,6]) :[0.539999,1]

22

Appendix 3

| ?- apply_schemas(1,0.8) .

Applying schema for sky i.e.:

schema(sky,*xl) <"
[sky:*xl] -

(part) — > [cloud]
(part) — > [blue_sky]
(loc) — > [image_top];

to regions [2,11,13]

SLOP fact retrieved: loc(image_top,[2,11,13]) :[0.811793,0.902015]

Subplan formed for area [2,11,13] is

[<2,[]),(11,[]),(13,[])]

Applying schema for cloud i.e.:

schema(cloud,*x5) <~
[cloud:*x5] -

(has_hue) — > [grey]
(has_val) — > [value@$high_val]
(part) < — [sky];

to regions [2]

SLOP fact determined: has_hue(grey,[2]) : [0.887762,0.988556]

SLOP fact determined: has_val(value@$high_val,[2]) :[0.100732,0.355524]

SLOP fact determined: cloud([2]) :[0.532657,1]

Applying schema for blue_sky i.e.:

schematblue sky,*x9) <~
[blue_sky:*x9] -

(has_hue) --> [blue]
(has_val) — > [value@$high_val]

(part) <-- [sky];

to regions [2]

SLOP fact determined: has_hue(blue,[2]) :[0,0]
SLOP fact determined: has_val(value@$high_val,[2]) :[0.100732,0.355524]

SLOP fact determined: blue_sky([2]) :[0.0906587,1]

Applying schema for cloud

to regions [11]

SLOP fact determined: has_hue(grey,[11]) :[0.89711,0.990316]

SLOP fact determined: has_val(value@$high_val,[11]) :[0,0]

SLOP fact determined: cloud([ll]) : [0.538266,1]

Applying schema for blue_sky

to regions [11]

SLOP fact determined: has_hue(blue,[11]) :[0,0]

SLOP fact determined: has_val(value@$high_val,[11]) :[0,0]

SLOP fact determined: blue_sky([11]) :[0,l]

Applying schema for cloud

to regions [13]

SLOP fact determined: has_hue(grey,[13]) :[0.928909,0.99526]

SLOP fact determined: has_val(value@$high_val,[13]) s[0,0]

SLOP fact determined: cloud([13]) :[0.557345,1]

Applying schema for blue_sky

23

to regions [13]

SLOP fact determined: has_hue(blue,[13]) :[0,0]

SLOP fact determined: has_val(value@$high_val,[13]) :[0,0]

SLOP fact determined: blue_sky([13]) :[0,l]

SLOP fact determined: sky([2,11,13]) :[0.90448,1]

Applying schema for trees i.e.:

schema(trees,*x29) <~
[trees:*x29] -

(has hue) --> [green 1
(has~val) — > [valuee$low_val]
(adj) — > [sky];

to regions [3,4,6,7,8,9,10,14,15,16,17]

SLOP fact retrieved: has huetgreen,[3,4,6,7,8,9,10,14,15,16,17]) :[0.009906
94,0.207021]

SLOP fact determined: has_val(value@$low_val,[3,4,6,7,8,9,10,14,15,16,17])
:[0.842552,0.908525]

SLOP fact determined: adj([3,4,6,7,8,9,10,14,15,16,17],[2,11,13]) :[l,l]

SLOP fact determined: trees([3,4,6,7,8,9,10,14,15,16,17]) :[0 . 800675,1]

Applying schema for trees

to regions [5,1,12]

SLOP fact retrieved: has_hue(green,[5,1,12]) : [5.19278e-05,0.0146256]

SLOP fact determined: has_val(value§$low_val,[5,1,12]) :[0.98001,0.995545]

SLOP fact determined: adj([5,1,12] , [2,11,13]) :[1,1]

SLOP fact determined: treest[5,1,12]) :[0.8352,1]

Applying schema for road i.e.:

schema(road, *x37) <""
[road:*x37] -

(part) — > [vehicle]
(part) --> [tarmac]
(has_shape) — > [extended];

to regions [18,19,20,21,22,23]

SLOP fact retrieved: has_shape(extended,[18,19,20,21,22,23]) :[0.915675,0 .981105]

Subplan formed for area [18,19,20,21,22,23] is

Applying schema for tarmac i.e.:

schema!tarmac,*x41) <~
[tarmac:*x41] -

(has_hue) — > [grey]

(has_val) — > [value@$low_val];

to regions [18]

SLOP fact determined: has_hue(grey,[18]) :[0,0]

SLOP fact determined: has_val(value@$low_val,[18]) :[1,1]

SLOP fact determined: tarmac([18]) :[0.4,1]

Applying schema for tarmac

to regions [22,20,21]

SLOP fact determined: has_hue(grey,[22,20,21]) : [0.825301,0.959008]

SLOP fact determined: has_val(value@$low_val,[22,20,21]) : [0.00408851,0.0783849]

SLOP fact determined: tarmac([22,20,21]) :[0.495181,1]

24

Applying schema for tarmac

to regions [23]

SLOP fact determined: has_hue(grey,[23]) : [0 . 849246,0.979899]

SLOP fact determined: has_val(value@$low_val,[23]) :[0.715832,0.933694]

SLOP fact determined: tarmac([23]) : [0. 509547 ,1]

Applying schema for tarmac

to regions [19]

SLOP fact determined: has_hue(grey,[19]) :[0.883045,0.987616]

SLOP fact determined: has_val(value@$low_val,[19]) :[0,0]

SLOP fact determined: tarmac([19]) :[0.529827,1]

SLOP fact determined: road([18,19,20,21,22,23]) :[0.899313,1]

Applying schema for trees

to regions [25,24]

SLOP fact retrieved: has_hue(green,[25,24]) :[0.105752,0.577313]

SLOP fact determined: has_val(value@$low_val,[25,24]) : [0.958712,0.991509]

SLOP fact determined: adj([25,24],[2,11,13]) :[0,0]

SLOP fact determined: trees([25,24]) :[0.830072,1]

possible car in regions with minX,maxX,minY,maxY as shown:-

region minX maxX minY maxY
22 29 63 58 66
20 22 49 52 61
21 37 51 57 59

What is support for?
h i
What is support against? (between 0 and 0)
|: 0
SLOP fact determined: road([18,19,20,21,22,23]) :[0.929984,1]

possible car in regions with minX,maxX,minY,maxY as shown:-

region minX maxX minY maxY
19 107 117 51 57

What is support for?
| : 0.9

What is support against? (between 0 and 0.1)
|: 0.1
SLOP fact determined: road([18,19,20,21,22,23]) :[0.995079,1]

yes
1 ?-

25

